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Abstract. The generalized Minimum Mean Squared Error
(GMMSE) detector has a bit error rate performance, which
is similar to the MMSE detector. The advantage of the
GMMSE detector is that it does not require the knowledge
of the noise power. However, the computational complex-
ity of the GMMSE detector is significantly higher than the
computational complexity of the MMSE detector. In this
paper, the complexity of the GMMSE detector is reduced
by taking into account the structure of the system matrix
(Toeplitz). Furthermore, by using circular approximation of
the structured system matrix an approximate GMMSE de-
tector is presented, whose computational complexity is only
slightly higher than MMSE, i.e. only an iterative gradient de-
scent algorithm based on the inversion of diagonal matrices
is additionally required.

1 Introduction

The maximum likelihood (ML) detection problem can be
written as a quadratic optimization problem with integer con-
straints (Verdu, 1998). Unfortunately this problem is in gen-
eral non-deterministic polynomial hard (NP-hard) (Verdu,
1989). This observation resulted in the development of
many receivers that have reasonable complexity (Tan and
Rasmussen, 2001; Chang and Han, 2008), e.g. the well-
known least squares (LS) and minimum mean squared er-
ror (MMSE) detectors (Lupas and Verdu, 1989; Madhow and
Honig, 1994) as the most simple cases.

Recently convex programming has been successfully em-
ployed to sub-optimally solve such detection problems. Us-
ing this kind of relaxation converts the discrete optimization
problem into a continuous one which can be solved itera-
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tively (Boyd and Vandenberghe, 2004). Generalized mini-
mum mean squared error detector is one important detector
that uses convex programming to solve the detection prob-
lem using unconstrained gradient descent algorithm (Yener,
Yates and Ulukus, 2002). The advantages of this detector
are that it has a BER performance which is similar to the
MMSE detector, and does not require the knowledge of the
noise power. Because of these advantages it can be used in
scenarios where the noise power is changing rapidly or the
noise power is unknown. Associated with these advantages
of GMMSE detector there is the disadvantage, that it has a
significantly higher computational complexity compared to
MMSE detector.

In order to decrease this computational complexity the
structure of the system matrix is used in this paper. First
the Toeplitz structure of the channel convolution matrix is
taken into consideration. In this case, computing the solution
of the GMMSE detector requires the EVD of Toeplitz ma-
trix but reduces the effort for the iterative gradient descent
algorithm significantly. Nevertheless, computing the EVD
of the Toeplitz matrix (using, e.g., Lanczos algorithm) is
still computationally demanding. Therefore, we approximate
the banded Toeplitz matrix by a circular matrix (Vollmer
et al., 2001). In this case the MMSE/GMMSE solution is
obtained by computing the EVD of the circular matrix us-
ing FFT/IFFT, such that the required EVD implies no addi-
tional effort. Therefore, the additional effort of approximate
GMMSE is only determined by the iteration steps of the gra-
dient descent algorithm based on the diagonal matrix con-
taining the eigenvalues.

This paper is organized as follows: in Sect. 2 a system
model for the detection problem and the convex relaxations
of the problem are introduced. LS and MMSE detectors
are described from the convex programming point of view
in Sect. 3. GMMSE detector is described in Sect. 4. In
Sect. 5 we introduce our new detector which is derived from
the GMMSE detector taking into account the structure of the
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error rate (BER) of the different detectors in section 6 and
the computational complexity is discussed in section 7. Con-
clusions are drawn in section 8.

2 System Model and its Relaxations

Consider the system model in matrix form as

r = Hx + n. (1)

The vector r ∈ Rm is the received signal vector, the matrix
H ∈ Rm×n is the channel matrix, and the vector n ∈ Rm

is additive white Gaussian noise with noise power σ2. The
transmitted symbols x ∈ Rn are drawn from Binary Phase
Shift Keying (BPSK) constellation, i.e. x ∈ {−1,+1}n.

Under the white Gaussian noise assumption the ML detec-
tor of x is given by

x̂ = arg min
x∈{−1,+1}n

‖r−Hx‖22 . (2)

The ML problem in (2) can be equivalently written as

x̂ = arg min
x∈{−1,+1}n

xT HT Hx− 2rT Hx. (3)

Substituting the value of the matched filter output

y = HT r (4)

into (3), we get

x̂ = arg min
x∈{−1,+1}n

xT HT Hx− 2yT x. (5)

This problem is NP hard and solving (5) by exhaustive search
has a complexity which grows with 2n [Verdu (1989)]. This
makes computationally less complex solutions of (5) inter-
esting.

We use the benefits of convex programming as an impor-
tant mathematical tool to solve problem (5) by relaxing the
constraint set in (5). Our constraint set x ∈ {−1,+1}nwhich
contains only the corners of the unit hypercube is not a con-
vex set. Therefore we relax this constraint set using three
relaxations which yield a convex set.

Figure1 shows the relaxed constraint sets for n = 2 taking
into account that the original problem contains only the cor-
ners of the unit hypercube. Three relaxations are considered:
relaxation of the constraint set to the whole unit hypercube
(region I), relaxation of the constraint set to the sphere which
covers the unit hypercube (region I+II), and the relaxation to
the whole space (region I+II+III). The solution in each case
can be mapped to the feasible set of the original problem by
taking the sign of each component of the relaxed solution
vector.

Fig. 1. Convex relaxations

3 Least Squares and MMSE detectors

We first discuss the LS and MMSE solution from the convex
programming point of view. Relaxing the constraint set to be
the whole space, i.e. (region I+II+III), problem (5) will take
the form

x̂ = arg minx∈Rn
xT HT Hx− 2yT x. (6)

The following theorem that was stated in [Boyd and Van-
denberghe (2004)] describes LS and MMSE solutions from
the convex programming point of view.

Theorem 1 Suppose that the objective function f in an un-
constrained convex optimization problem is differentiable, so
the well known necessary and sufficient optimality condition
is

∇f = 0. (7)

Applying condition (7) to problem (6), which has an objec-
tive function

f(x) = xT HT Hx− 2yT x, (8)

the necessary and sufficient optimality condition gives the
solution

x∗ =
(
HT H

)−1
y, (9)

which is the well known least squares solution.
When the noise power σ2 is known, using the same re-

laxation (region I+II+III) we get the minimum mean square
error solution

x∗ =
(
HT H + σ2I

)−1
y. (10)

Fig. 1. Convex relaxations.
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4 Generalized MMSE detector

If we relax the constraint set in problem Eq. (5) to be the
sphere which contains the unit hypercube, i.e. (region I+II),
then our detection problem takes the form

x̂ = arg min
xT x≤n

xT HT Hx −2yT x. (11)

Since problem Eq. (11) has a convex objective function over
a convex constraint set, it is a convex optimization prob-
lem and it has a unique minimum (Boyd and Vandenberghe,
2004). The convex duality theorem guarantees that no dual-
ity gap exists and one can solve for the dual problem instead
(Nash and Sofer, 1996). Problem Eq. (11) has a single con-
straint such that there is only one dual variable and a simple
iterative algorithm can be employed to solve this dual prob-
lem.

We can express the Lagrange dual function as

L(x,λ) = xT HT Hx −2yT x+λ
(
xT x−n

)
, (12)

which is minimized overx and maximized overλ ≥ 0. Solv-
ing for x in terms ofλ and substituting back, we obtain

max
λ≥0

−yT
(
HT H +λI

)−1
y−λn. (13)

This problem has the advantage, that it is a one dimensional
optimization problem. Now we can solve this dual prob-
lem Eq. (13) instead of the primal problem Eq. (11) because
there is no duality gap between these two problems. Prob-
lem Eq. (13) can be solved by different iterative algorithms
(Hansen, 1979). A simple unconstrained gradient descent al-
gorithm given by

λ̄(t +1) = λ̄(t)+µ

(
yT

(
HT H + λ̄(t)I

)−2
y−n

)
, (14)

converges tōλ for a reasonable choice ofµ. The solution of
Eq. (13) is given by

λ∗
= max(0,λ̄). (15)

Then, the unique minimizer of Eq. (11) is

x∗
=

(
HT H +λ∗I

)−1
y. (16)

This solution looks familiar because of its similarity to the
MMSE detector. Whenλ∗

= σ 2, the GMMSE detector re-
duces to the MMSE detector. Therefore this detector which
depends on the value of optimum dual solutionλ∗ is named
Generalized MMSE detector. The advantage of the GMMSE
detector is, that it improves the BER performance (Compared
to LS detector as the MMSE detector) and does not require
the knowledge of the noise powerσ 2. However GMMSE
detector has the disadvantage that it requires a significantly
higher computational complexity than MMSE detector.

5 Structured problem

In this Sect. we consider the reduction of the computational
complexity of the GMMSE detector by taking the structures
of the underlying detection problems into account. In the
first case the Toeplitz structure of the channel convolution
matrix H is used. In this case we will express the matrix
HT H in problem Eq. (11) by its eigenvalue decomposition
HT H = V3VT whereV is the matrix whose columns are the
eigenvectors ofHT H and3 is a diagonal matrix that con-
tains the corresponding eigenvalues as its diagonal elements.
Problem Eq. (11) can be rewritten as

x̂ = arg min
xT x≤n

xT
(
V3VT

)
x−2yT x. (17)

The dual problem for the problem Eq. (17) in this case takes
the form

max
λ≥0

−yT
((

V3VT
)
+λI

)−1
y−λn. (18)

The unconstrained gradient descent algorithm takes the form

λ̄(t +1) = λ̄(t)+µ
(
yT V

(
3+ λ̄(t)I

)−2VT y−n
)

(19)

and the GMMSE solution will be

x∗
= V

(
3+λ∗I

)−1VT y. (20)

Besides computingVT y only diagonal matrices must be
converted in Eq. (19) and Eq. (20), which simplifies the
computations significantly. We can also make use of the
Toeplitz structure ofHT H when computing the EVD by
using the Lanczos algorithm (Golub and Loan, 1996). Al-
though this approach reduces the computational complexity
of the GMMSE detector significantly, it is still much more
complex than MMSE because of the required EVD (the
iterations of Eq. (19) on the diagonal matrices are only of
O(n)). In the following we will discuss the circular structure
case, which is obtained by an approximation of the Toeplitz
case. A banded Toeplitz structure gives a circular structure
by addingL−1 columns to the Toeplitz matrix, whereL is
the length of the channel impulse response. This is shown in
the following example forL = 2:

H =

h1 0
h2 h1
0 h2

 →

h1 0 h2
h2 h1 0
0 h2 h1

 = H̃.

If channel matrixH in problem Eq. (11) is approximated
by circular matrixH̃ we obtain

x̂ = arg min
xT x≤n

xT H̃
T

H̃x −2yT x. (21)
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Fig. 2. Performance analysis for Structured LS, MMSE, and
GMMSE detectors,n = 50 and channel lengthL = 7 (t : Toeplitz
case;c: circular case).

We can express the matrix̃H
T

H̃ by its eigenvalue decompo-

sition H̃
T

H̃ = FT 3F, whereF is the discrete Fourier trans-
form matrix (computed by FFT) and3 = diag

(
F · H̃(:,1)

)
in that case problem Eq. (11) can be written as

x̂ = arg min
xT x≤n

xT
(
FT 3F

)
x−2yT x. (22)

The dual problem for problem Eq. (22) is

max
λ≥0

−yT
((

FT 3F
)
+λI

)−1
y−λn (23)

and the gradient descent algorithm in the circular case takes
the form

λ̄(t +1) = λ̄(t)+µ
(
yT FT

(
3+ λ̄(t)I

)−2Fy−n
)
. (24)

After getting the optimal valueλ∗, the GMMSE solution in
the circular case is

x∗
= FT

(
3+λ∗I

)−1Fy. (25)

Again, besides computingFy (IFFT) only diagonal matri-
ces must be inverted in Eqs. (24) and (25). Most impor-
tant, no EVD computation is required in the circular case,
since the EVD of a circular matrix is easily obtained using
FFT/IFFT. Therefore, in this case the additional effort (com-
pared to MMSE) is given by the iteration of Eq. (24), i.e. in-
versions of diagonal matrices and scalar products.

6 Simulation results

The BER performance of the different detectors is discussed.
In the simulation we compare the BER performance for LS,
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Fig. 3. Performance analysis for Structured LS, MMSE, and
GMMSE detectors,n = 1000 and channel lengthL = 15 (t :
Toeplitz case;c: circular case).

MMSE, and GMMSE detectors, taking into account that we
have two different structures, Toeplitz and circular approxi-
mation. We applied this simulation for two different simu-
lation scenarios. The equalization problem in the first sce-
nario has a channel impulse response of lengthL = 7 and a
transmitted bit vector of lengthn = 50. The second scenario
describes the equalization problem with channel impulse re-
sponse of lengthL = 15 and a transmitted bit vector of length
n = 1000. Figures (2) and (3) show that GMMSE detector
has almost the same performance as MMSE detector but it
has the advantage that it does not require the knowledge of
σ 2. Furthermore, we see that the circular approximation only
slightly degrades the performance of the detectors.

7 Complexity analysis

The computational complexity of the GMMSE detector is
composed of two parts:

(Part 1). The complexity of the solution of the system of equations
(Eqs.16, 20 or 25) which is the same as for LS and MMSE (Eqs.9
or 10).

(Part 2). The complexity of the iterations required for the gradient
descent algorithm (Eqs.14, 19or 24).

In part 1, if there is no structure the solution is obtained
by the Cholesky algorithm with complexityn3/3. When
there is a Toeplitz structure, the solution is given by the
Levinson algorithm with complexity 4n2 and if we approx-
imate this Toeplitz matrix to a circular structure, the solu-
tion is obtained using the FFT decomposition with complex-
ity 3/2(n+L− 1)log2(n+L− 1). Therefore, the circular
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Fig. 4. Iterations for gradient descent algorithm in Toeplitz and
circular structure cases forn = 50 and channel lengthL = 7.
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Fig. 5. Iterations for gradient descent algorithm in Toeplitz and
circular structure cases forn = 1000 and channel lengthL = 15.

approximation results in a significantly reduced computa-
tional complexity.

In part 2 gradient descent algorithm adds some complex-
ity. However, for the structured cases (Eqs.19 or 24) the
iterations of the gradient descent algorithm are only applied
to diagonal matrices (3) such that the complexity is only of
O(n) per iteration. Figures (4) and (5) show the mean num-
ber of required iterations for the Toeplitz case and the circular
case in our two scenarios respectively. Obviously, the num-
ber of iterations in each scenario for both cases is almost the
same. We assume the worst case complexity for part 2 by
taking 6 iterations for all cases . Since the required number
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Fig. 6. Computational complexity forn = 50 and channel length
L = 7.
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Fig. 7. Computational complexity forn = 1000 and channel length
L = 15.

of iterations is quite small and the computational complexity
is only of O(n) per iteration, the complexity of the gradient
descent algorithm is almost negligible compared to part 1.

The overall complexity (part 1 and part 2) for our two
cases is shown in Fig. (6) and (7).

8 Conclusions

In this paper, it was shown that the circular approximation
of the Toeplitz channel matrix is not only effective to signifi-
cantly reduce the computational complexity of GMMSE de-
tector using the gradient descent algorithm, but it also keeps
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the performance gain compared to LS detector (is almost the
same as MMSE) without any requirement to know the noise
power value(σ 2) .

In future work we will apply the presented technique to
various practical problems and evaluate the performance de-
pending on the channel length (L) and the dimension of the
transmitted bit vector (n). We will also apply it to some com-
mon communication schemes like CDMA and OFDM.
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