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Abstract. In this paper a method to obtain harmonic transfer
matrices (HTM) from simulated or measured values (signa-
ture & signature response) is presented. These matrices sub-
serve a description of complex systems (e.g. RF front-ends)
with real properties, which can’t be specified by simple an-
alytic expressions. They afford to give statements about a
systems parameter. That’s why HTM are suitable for Built-
In-Self-Test (BIST) and opens the option for Built-In-Self-
Correction (BISC) for critical function-blocks.

1 Introduction

For specification compliant function of modern communi-
cation systems a permanent check of operating parameters
is necessary. Within higher integration density it is getting
more and more difficult to test single components and read-
just them. The tested components have to maintain well-
defined parameters else a whole system can be inoperable.
The common separate testing of single devices is elaborate
and expensive because there are high requirements in hard-
ware and time. Whereas Radio-Frequency Built-In-Self-Test
(RF-BIST) also offers a concept for testing whole RF front-
ends. On functional devices integrated test-circuits realise
an automatic function-test on production and at starting the
device. Signatures and their responses provide information
about state and behaviour of system. For characterisation the
systems properties harmonic transfer matrices (HTM) can
be used. Such matrices describe transmission behaviour of
circuits between frequencies of input signal and frequencies
of output signal. It’s possible to depict effects like inter-
modulation and frequency conversion appearing in nonlinear
systems. Intension is to make conclusions from distinctive
matrix-structures to potential readjustable operation param-
eters. Fixing incorrect circuit-parameters from HTM facili-
tate a targeted correction. Built-In-Self-Correction (BISC) as
next step is applicable in order to latter point.

In this paper a method is presented to ascertain HTM from
input and output signals in conformity with measured sig-
nals. The creation of HTM depends on special conditions.
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This has an outstanding meaning concerning nonlinear sys-
tems and their functional characterisation, because there is
coherence between HTM and circuit structure. Matrices for
LTI- and linear periodically time variant systems (LPTV) can
be calculated easily. It is examined, how to get HTM from
input and output signals. The verification of developed algo-
rithms is carried out by simulation on transistor level.

The text is structured as follows. Section 2 is responsive
to the basics of HTM. Subsequently in Sect. 3 essential mod-
els for block description are presented. In Sect. 4 the block
description is emphasised to nonlinear systems and the cal-
culation of HTM is explained. Simulation results for a RC-
low-pass filter and a real mixer are pictured in Sect. 5. Con-
clusions are made in Sect. 6.

2 Harmonic Transfer Matrices (HTM)

LTI systems are described by transfer functions. For linear
periodically time variant systems (LPTV) a simple modelling
with transfer functions isn’t feasible. The transfer proper-
ties of LPTV systems can be expressed by harmonic transfer
matrices (HTM). For last-mentioned systems the HTM char-
acterises small signal behaviour while large signal operation
point chances periodically in time. Examples therefore are
mixer and phase locked loop (PLL). The derivation of HTM
for LPTV systems is given in Vanassche et al. (2002, 2003).

The relation between input and output signal is given by:

y(t) =

∞∫
−∞

h(t, r)x(r)dr. (1)

The systems pulse responseh(t, r) is supposed to be known
and periodically in time. The input signal in time domain is
x(r).

Converting Eq. (1) like in Vanassche et al. (2002) and
Vanassche et al. (2003) reaches to equation:

Y (s + ls0) =

∞∑
k=−∞

Hl−k(s + ks0)X(s + ks0). (2)
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Fig. 1. Influence of single spectral components from input to output.

How to see easily the vector on right side in Eq. (2) can be
written as a product from matrix and a vectorX.

...

Y (s − s0)

Y (s)

Y (s + s0)
...

 = (3)



. . .
...

...
...

· · · H0(s − s0) H1(s) H2(s + s0) · · ·

· · · H−1(s − s0) H0(s) H1(s + s0) · · ·

· · · H−2(s − s0) H−1(s) H0(s + s0) · · ·

...
...

...
. . .

 ·



...

X(s − s0)

X(s)

X(s + s0)
...


In Eq. (3) the assignment of input vectorX and output

vectorY by HTM is shown. There are infinite numbers of
rows and columns in HTM. The elements contain Fourier-
coefficients of the periodic pulse response. If there are only
a finite number of elements in the HTM, there is an error
according to the remainder term of the Fourier series.

X andY contain the Fourier-coefficients of input signal
x(t) and output signaly(t). Generally the HTM can be

written as (Vanassche et al., 2002):

H =



. . .
...

...
...

· · · H−1,−1 H−1,0 H−1,1 · · ·

· · · H0,−1 H0,0 H0,1 · · ·

· · · H1,−1 H1,0 H1,1 · · ·

...
...

...
. . .

 (4)

with Hl,k = Hl−k(s + ks0). Every row of HTM specifies
the effect of input signalx(t) on every spectral component
of output signaly(t) (Fig. 1). The matrix-elements indicate
weighted influence of a spectral component from input signal
on a spectral component of output signal.

Fig. 2. Parallel connection (left) and series connection (right).

Simultaneously there can occur phase shift from input to
the output of a system. Hence matrix and vector elements are
complex numerical values.

3 Essential models

Ideal linear amplifier
An ideal linear amplifier actualises a multiplication of in-

put signal with a constant. In this case it doesn’t matter if
the input signal is a multi-tone signal. The amplification is
frequency independent and there is no frequency conversion.
The main-diagonal elements contain a constant amplification
factora, and all other elements are zero.

y(t) = a · x(t) → Y = HA · X; HA;n,n = a : ∀n (5)

The parametera is the amplification. If it is a complex value,
it additionally realises a phase shift.

Ideal mixer
An ideal mixer causes only frequency conversion. Every

spectral component gets the same frequency offset.

y(t) = a · ejωtx(t) → Y = HM · X

HM;m,n = a : ∀n = m + off set
(6)

Only the elements in a secondary diagonal consists of the
constant factora. Even the main diagonal is zero. Ifa=1,
pure frequency conversion will be effected. Amplitude and
phase won’t be changed. Ifa6=1 there will an effect like a
combination from mixer witha=1 and amplifier witha 6=1.

LTI-systems
Ideal linear amplifier, attenuator and linear passive filter

are LTI-systems.
These systems apply:

Hl,k(s) = H(s + ks0) = G(s + ks0) for k = l

Hl,k(s) = 0 for k 6= l
(7)

While G(s) is the transfer function of the LTI-system.

Real Devices
Real devices can be modelled by interconnecting ideal de-

vices. That will be done with the above introduced ideal
models shown in Fig. 2. The resulting HTM is computed
by interconnected ideal subsystems and their HTM.
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Calculation rules for this purpose are shown in Lupea et
al. (2003) and Vanassche et al. (2003). It applies for block
level:

Parallel connection: Hges= H1 + H2 (8)

Series connection: Hges= H2 · H1 (9)

Furthermore the calculation rules for matrices are used for
HTM as shown in Vanassche et al. (2002).

More details for important models to describe systems
with HTM are given in Lupea et al. (2003).

4 Synthesis of HTM

4.1 Extending HTM for nonlinear systems

HTM like in Sect. 2 are only given for LPTV-systems,
because Laplace and Fourier transformation respectively
claims linearity. However the matrices are applicable to non-
linear static systems. The frequency conversion effect can
be used as approach. The conversion is modelled by mixers’
HTM (q.v. also Lupea et al., 2003). Additional character-
istics are expressible by amplifiers and filters. It’s impor-
tant to remark that HTM for nonlinear cases are only valid
for a steady operation point and input signals periodic in
time. Otherwise there is no HTM expressed by mixer models
assignable. Changing operation point there is also a variation
in frequency conversion and intermodulation with regard to
the relation of input and output signals. The periodicity of in-
put signal is precondition to specify a HTM. There is no way
to generate a Fourier series to a non-periodic signal. Hence
there is also no vector notation for this signal. Thus HTM for
nonlinear systems depends on operation point and input sig-
nal. For example a nonlinear amplifier has a characteristic:

y(t) = a1x(t) + a3 [x(t)]3 . (10)

The amplifier can be modelled as shown in Fig. 3. The
nonlinearity [x(t)]3 is realised with two ideal mixers M1and
M2. At both inputs of mixer M1 the input signalx(t) is in-
jected. The output signal [x(t)]2 is connected with one input
of mixer M2. The other input is fed withx(t). So M2 emits
[x(t)]3. The ideal amplifiers A1 and A3 are linear. With A1,
A3, M1, M2 as HTM as described in Sect. 3, then is:

Y = [A1 + A3 · M2 · M1] · X. (11)

4.2 The characteristic vector

A “characteristic” vector of HTM, which don’t describe filter
functions, is constituted. That means this vector is just sig-
nificant to amplifier and mixer matrices and their sums and
products, because only such matrices are Toeplitz matrices.
Toeplitz matricesM have following property:

M ∈ Cn×n
; ∀ i, j : Mi,j = Mi+1,j+1 (12)

Fig. 3. Block-model of a nonlinear amplifier.

and is a basic characteristic of HTM of mixers and nonlin-
ear systems without filter performance. The HTMs row with
index zero is declared as the characteristic vectorV 0:

H =



. . .
...

...
...

· · · b c · · · · · ·

· · · a b c · · ·

· · · · · · a b · · ·

...
...

...
. . .

 =



...

V −1
V 0
V 1
...

 . (13)

So there emerges a demand for completeness to this vector.
At least there should be minor error if elements are missing.
The amplifier example above implies that the mixer matrices
M1 andM2 are identical and merely contain the input signal
x.

4.3 Multiplication of HTM

It is necessary to regard that the matricesM1 andM2 have
an infinite number of rows and columns. If the characteris-
tic vector is bounded in length, i.e. all elementsvi=0 with
|i|>imax, then the matrix is allowed to have a finite number
of rows and columns. For numerical processing are only ma-
trices with finite dimension evaluable anyway. But it is not
possible to calculate with quadratic matrices, because they
don’t include the whole characteristic vector in every row.
That is why there is the need to render matrices which have
to be multiplied. The left factor gets more columns and the
right factor more rows, so there is the entire characteristic
vector in every row.

The left factorM2 according to the amplifier example is:

M2 =


a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

 (14)

with the characteristic vectors:

V M1 = V M2 =
[
a b c d e

]
. (15)

The multiplication of these matrices realises just a cross cor-
relation of their two characteristic vectors at last.
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Fig. 4. Partitioning a separable system in blocks.

The product of HTM and input vectorX results in vec-
tor Y . In ideal case latter contains the same Fourier coeffi-
cients as the signaly(t). For additional frequency-selective
behaviour the HTM has to be multiplied with a filter-HTM
HF. The resulting HTM yields as follows:

Hres = HF · HToeplitz (16)

4.4 Vectorial representation

Hres is not a Toeplitz matrix, because filter-HTMs don’t have
such a structure. Hence there is no characteristic vector pre-
sentable. SplittingHres as given in Eq. (16) enables to de-
scribe the whole HTM with two vectors, the characteristic
vector and a filter vector. This notation is space-saving in
contrast to the HTM. Latter fact is particularly clear if the
matrices have more than 100*100 elements. Moreover the
partition Eq. (16) is a fundamental assumption to the method
to compute the HTM as presented in Sect. 4.5.

The filter vectorF only consists of the main diagonal com-
ponents of filter matrixHF.

HF =



. . .

Gν

Gν+1
Gν+2

. . .

 → F =



...

Gν

Gν+1
Gν+2

...

 (17)

4.5 Computation of HTM

There are following restrictions for calculation of HTM:

– The input signalx(t) is an OFDM-signal. That means
it is available as:

x(t) =

n∑
i=1

xi cos(ωi t + ϕi) , xi = 0 with i = 0. (18)

– The system to analyse is a linear or a nonlinear separa-
ble system. Latter is a system which filter characteristic
is separable from nonlinear characteristic, so both char-
acteristics can be expressed by two HTM as shown in
Fig. 4.

It yields:

Y = HF · Hnonlin · X. (19)

A measurement of large signalsx(t) andy(t) is accom-
plished and vectorsX andY determined. From a small signal

measurement between input and output results the filter ma-
trix. So nonlinear effects are negligible. With compliance of
restrictions given above, the HTM describing nonlinearities
contains redundancies which reduces the number of variables
in the arrangable system of equations.

Hence it is:

Y ′
=


y0
y1
y2
y3
y4

 =


H ∗

2 H ∗

1 H0 H1 H2
0 H ∗

2 H ∗

1 H0 H1
0 0 H ∗

2 H ∗

1 H0
0 0 0 H ∗

2 H ∗

1
0 0 0 0 H ∗

2

 ·


x−2
x−1
x0
x1
x2

 (20)

The system of equations can be solved by splitting the sin-
gle elements in real part and imaginary part. ForY ′ will be
writtenY further.

Y re+Y im=Hre·Xre−H im·Xim + j (Hre·Xim + H im·Xre)(21)

So there yields a new system of equations:[
Y re
Y im

]
=

[
Hre −H im
H im Hre

]
·

[
Xre
Xim

]
(22)

By re-sorting the matrix elements follows:[
Y re
Y im

]
= XM ·

[
V Hre

V H im

]
(23)

whereXM consists of elements ofXr andXi and

V Hr =
[
Re(H0) Re(H1) . . . Re(Hn)

]T
.

The imaginary part ofV H yields in equivalent way to the
real part. Equation (23) specifies a over-determined system
of equations. In most cases there is no solution. To solve this
problem least mean square algorithms (LMS) are used. The
wanted variables can be calculated as shown in Eqs. (24) and
(25):

The system of equation is:

A · x = b. (24)

The LMS-condition is:

m∑
i=1

r2
i = rT

· r = (Ax − b)T
· (Ax − b) = min (25)

with r = (Ax − b), r 6=0 and

A = (ai,j ) , i = 1...m , j = 1...n , m > n.

5 Simulation results

To verify operability of developed algorithm the input and
output vectors have been created with a network simulator.
A DUT has been simulated with a OFDM-input signalx(t),
modulated in amplitude, and the output signaly(t) has been
detected. The spectra of the signals yield in input and output
vectors. The amplitude modulation in small signal range let
determine the filter matrix. Fig. 5 shows the characteristic
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Fig. 5. Characteristic vector of RC-low-pass filter.

Fig. 6. HTM-Section of a RC-low-pass filter.

vector of a simple RC-low-pass filter. With the method de-
scribed above this vector has been correctly calculated. The
element with index 0 got the value 1, all other are ideally 0.
As a result of inaccuracies in computation there are minimal
tolerances. But in phase are huge deviations when magnitude
is very small. It should be noted that the phase of complex
values with a zero magnitude is undetermined. The charac-
teristic vector creates an identity matrix for the nonlinear be-
haviour, because the filter matrix already describes the whole
behaviour of this LTI-system.

Figure 6 shows the magnitude of a section of the HTM.
The resulting HTM includes the gain response following the
main diagonal.

A tested mixer has the gain response and the phase re-
sponse pictured in Fig. 7. The characteristic vector is shown
in Fig. 8. Latter let recognise the structure for mixer and
nonlinearities. The typical amplitudes, effected by local os-
cillator, are explicitly visible at index±10. That corresponds
fLO=1 GHz. The linear amplifying component is located at

Fig. 7. Amplitude and phase response of a mixer.

Fig. 8. Characteristic vector of a mixer.

index 0 (0 Hz). The small involutions round the oscillator
and linear peaks originate from nonlinear distortions caused
by intermodulation.

The mixer has isolating capacitors at signal input and out-
put. The small signal for analysing the filter characteristic
has to pass these capacitors. So it is possible that no valid
voltages could be measured, because the constant component
is filtered out. The filter function has to be questioned for
such cases. In an iterative network of filters previous filter
can mask the test-signal for subsequent devices. The am-
plitudes of small signal can become less than it would be
necessary for computation.

6 Parameter-extraction from HTM

With structure of HTM and characteristic vector respectively
assertions about a system can be made. So induces the occu-
pancy of secondary diagonal elements the existence of mixer
behaviour. But it is not possible to maintain offhand the fre-
quency conversion is generated by a mixer or by intermod-
ulation, because nonlinearities are modelled by mixer matri-
ces. To make states concerning BISC, the properties of DUT
has to be known in such way, that a comparison between
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“determined” HTM and a nominal HTM can be made. Then
parameter variation and correction values can be calculated.

7 Conclusions

In this paper a method to determine harmonic transfer matri-
ces (HTM) by simulation has been presented. Starting point
was the assumption for description of HTM of linear peri-
odic time variant systems (LPTV). The concept of HTM has
been extended on nonlinear static systems. A synthesis from
ideal building blocks to HTM, specifying real systems, util-
ising fundamental properties of HTM has been arranged. A
way to calculate HTM for separable systems was shown. The
HTM can be presented in short view with two vectors. With
simulations the synthesis has been verified, whereas the ap-
plicability for BIST and BISC became obvious.
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Möllerstedt, E. and Bernhardsson, B.: Out of Control Because of
Harmonics, IEEE Constr. Syst. Mag., 70–81, 2000.

Schubert, L.: Generierung und Evaluierung von OFDM-Spektren
für RF-BIST mit Cadence SpectrRF, Masterarbeit, TU Dresden,
Institut für Verkehrsinformationssysteme, Oktober 2003.

Thumm, M., Wiesbeck, W., and Kern, S.: Hochfrequenzmeßtech-
nik, Verfahren und Meßsysteme, 2. Aufl., Stuttgart, Teubner,
ISBN 3-519-16360-8, 1998.

Vanassche, P., Gielen, G., and Sansen, W.: Symbolic Modeling
of Periodically Time-Varying Systems Using Harmonic Transfer
Matrices, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 21, No. 9, Sept. 2002.

Vanassche, P., Gielen, G., and Sansen, W.: Time-Varying,
Frequency-Domain Modeling and Analysis of Phase-Locked
Loops with Sampling Phase-Frequency Detectors, IEEE, 1530–
1591, 2003.


