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Abstract. The exposure of human body to electromagnetic
fields has in the recent years become a matter of great in-
terest for scientists working in the area of biology and bio-
medicine. Due to the difficulty of performing measurements,
accurate models of the human body, in the form of a com-
puter data set, are used for computations of the fields in-
side the body by employing numerical methods such as the
method used for our calculations, namely the Finite Inte-
gration Technique (FIT). A fact that has to be taken into
account when computing electromagnetic fields in the hu-
man body is that some tissue classes, i.e. cardiac and skeletal
muscles, have higher electrical conductivity and permittivity
along fibers rather than across them. This property leads to
diagonal conductivity and permittivity tensors only when ex-
pressing them in a local coordinate system while in a global
coordinate system they become full tensors. The Finite Inte-
gration Technique (FIT) in its classical form can handle di-
agonally anisotropic materials quite effectively but it needed
an extension for handling fully anisotropic materials. New
electric voltages were placed on the grid and a new averag-
ing method of conductivity and permittivity on the grid was
found. In this paper, we present results from electrostatic
computations performed with the extended version of FIT
for fully anisotropic materials.

1 Introduction

With continuously increasing numbers of electrical and elec-
tronic devices being used both in households and for com-
munication purposes, special concerns arise regarding the
possible adverse biological effects of high or low frequency
electromagnetic fields on the human body. The difficulties
in directly measuring the fields’ induced currents or energy
inside the body have resulted in different maximum values
within the safety guidelines for limiting the effects of human
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exposure to non-ionizing electromagnetic radiation. In such
conditions, the estimation of electromagnetic fields inside the
body using numerical methods adequate for computer code
implementations, represents a good alternative to the experi-
mental measurements, especially, because the computational
capacities are currently able to respond to such complex tasks
and continue to have a quick evolution. Another argument
for using computer based numerical methods is the availabil-
ity of realistic human body models of high resolution based
on anatomical data in the form of a computer data set. Nu-
merical methods such as the Finite Element Method (FEM),
the Finite Difference Method (FD), the Boundary Element
Method (BEM), and the Finite Integration Technique (FIT)
have already been used in computations of electromagnetic
fields in the human body. Our computations are based on an
extended version of the Finite Integration Technique (FIT)
which allows us to account for the anisotropic character of
some tissue classes.

2 Human body model

The human body model used in our simulations was created
by a working group at the Institute of Biomedical Engineer-
ing, University of Karlsruhe, Germany, who applied strate-
gies of image processing (Sachse et al., 1996a; 1996b) to a
set of anatomical data obtained from Computed Tomogra-
phy (CT) and Magnetic Resonance Tomography (MRT) pro-
vided by the National Library of Medicine, Maryland, USA.
The images were first assembled in a 3D anatomical model
consisting of cubic voxels each voxel having been assigned
one of 40 different tissue types. To every tissue class was
assigned a frequency dependent electrical conductivity and
permittivity in order to obtain a dielectric model which can
be used for electromagnetic simulations in computerized ap-
plications. The dielectric properties of tissues are known
from measurements (Gabriel et al., 1996). The model, known
as HUGO, is available in different resolutions, from 8 mm3

to 1 mm3. Furthermore, this model was extended with the
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Fig. 1. Local interpolation scheme of a grid voltage in x-direction
at the location of a grid flux in y-direction.

Orientation Data Set which gives the direction of fibers by
providing two angles for every voxel containing muscle tis-
sue (Sachse et al., 1998).

3 Electromagnetic properties of biological tissues

It is known that biological tissue is non-magnetic i.e. the per-
meability of biological tissue is equal to that of free space
(Durney et al., 1986). The permittivity and conductivity
vary with temperature but a stronger variance is experienced
with frequency. While permittivity of biological tissue gen-
erally decreases with frequency, its conductivity generally in-
creases.

Some tissue types which present a fiber structure (e.g.
skeletal and cardiac muscles) are anisotropic having higher
conductivity and permittivity in the longitudinal direction of
the fibers than on the perpendicular direction to the fibers
(Sachse et al., 1997). Shortly, these tissues present a trans-
versely isotropic anisotropy with regard to their dielectric
properties.

(Note: In compliance with the subject matter, the remain-
der of this paper will refer only to permittivity, though, it
should be noted that conductivity can be treated in exactly
the same way.)

In a local coordinate system, the permittivity of muscle
tissue is described by a diagonal tensor of rank two:

Tεl =

 εl 0 0
0 εp 0
0 0 εp

 , (1)

whereεl is the longitudinal permittivity andεp is the perpen-
dicular permittivity, relative to the fiber’s direction.

Since muscle fibers are miscellaneously oriented in the
body, for computational reasons, it is useful to express this
tensor in a global coordinate system. In this respect, the local
tensor has to be rotated according to the following equation:

TεG=RTεL R−1, (2)

where the rotation matrixR is the product of two other rota-
tion matrices:R=RxyRxz, with Rxy andRxz given below.

Rxy=

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 Rxz=

 sinθ 0 cosθ
0 1 0

cosθ 0 − sinθ

 . (3)

The anglesφ andθ are the rotation angles about the z- and
y-axes, respectively, provided by the Orientation Data Set.
After the rotation in Eq. (2) we obtain a full and symmetric
tensor which expresses the permittivity of muscle tissue in a
global coordinate system.

4 Considerations concerning the classical Finite Inte-
gration Technique (FIT)

Since a lot of literature has already been published about the
FIT, only a short introduction is provided here concerning the
allocation of some grid-state variables and material treatment
related to the subject of this paper. For more general details
about FIT, we recommend you see van Rienen (2001), mean-
while, for more information concerning the subject matter of
this paper, see van Rienen et al. (2003).

The Finite Integration Technique (FIT) was first published
by Weiland (1977) and developed as a numerical method
which discretizes the Maxwell’s equations on a grid pair
preserving the analytical properties of the original equations
(van Rienen, 2001). On the FIT’s grid doublet, in connection
with Electrostatics, the following variables are defined:

– the electric potentials (denoted withϕn), allocated in ev-
ery mesh node belonging to the primary grid;

– the electric grid voltages (denoted withên), allocated in
the middle of the edges belonging to the primary grid
and calculated as the integral of the electric field along
primary edges;

– the electric grid flux densities (denoted withˆ̂dn), normal
in the middle of the surfaces belonging to the dual grid
and calculated as the integral of the electric flux on dual
surfaces.

In a 3D Cartesian coordinate system, because the dual grid
is shifted with half an edge length in all positive directions
with respect to the primary grid, the primary edges intersect
dual surfaces on the normal direction in the middle. This
means that an electric grid voltageên from the primary grid
is allocated in the same point with the corresponding electric

grid flux ˆ̂
dn in the same direction, from the dual grid.

The electric fluxes and voltages with coinciding both, lo-
cations and orientations, are related to each other by the per-
mittivity according to the following equation:

ˆ̂
dn

ên

=

∫ ∫
Ãn

D·dA∫
Ln

E·ds
=

∫ ∫
Ãn

εdA+O(1κ+1)∫
Ln

ds+O(1κ)

≈
ε
∫ ∫

Ãn
dA∫

Ln
ds

+O(1κ)≈ε
| Ãn |

| Ln |
=[Mε]n,m, (4)
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whereκ takes values betweenκ=2 for varying permittivity
or non-uniform step size andκ=3 otherwise. The symbol
ε denotes a weighted average of the permittivity on a dual
surface from four possibly different values belonging to the
primary grid cells intersected by that dual surface. For the
entire grid, the point-wise relation in Eq. (4) becomes:

ˆ̂
d=D̃ADεD−1

S ê=M ε ê, (5)

where: D̃A , Dε and D−1
S are diagonal matrices containing

the areas of the dual surfaces, the permittivity of the primary
grid cells averaged on the dual surfaces and the inverse of

the primary edge lengths, respectively. The vectorsˆ̂
d and

ê contain the electric grid fluxes allocated in the middle of
dual surfaces and the electric grid voltages along the primary
edges.M ε is the material operator which decomposed along
the axes of a Cartesian coordinate system has the following
diagonal form:

M ε=

 D̃Ayz Dεxx D−1
Sx

0
0

0
D̃Axz Dεyy D−1

Sy

0

0
0

D̃Axy Dεzz D−1
Sz

 (6)

In its classical form, FIT allows the presence of diagonally
anisotropic material on the grid but, as it was shown, this
allowance is not enough for computing muscle tissues which
are fully anisotropic in a global coordinate system.

5 Extension of the Finite Integration Technique for
computing anisotropic tissues

To deal with anisotropic tissues, we follow the idea from
(Krüger, 2000) where gyrotropic materials were treated in
time domain.

When the diagonal matrixDε in Eq. (5) is replaced with a
full one, the material operator in Eq. (6) becomes:

M ε=

 D̃Ayz Dεxx D−1
Sx

D̃Axz Dεyx D−1
Sx

D̃Axy Dεzx D−1
Sx

D̃Ayz Dεxy D−1
Sy

D̃Axz Dεyy D−1
Sy

D̃Axy Dεzy D−1
Sy

D̃Ayz Dεxz D−1
Sz

D̃Axz Dεyz D−1
Sz

D̃Axy Dεzz D−1
Sz

 (7)

The off-diagonal terms of the material operator are coupling
electric grid flux vectors in one direction to electric grid volt-
age vectors in another direction. To bring the vectors with
different orientations to the same location on the grid, an in-
terpolation process is necessary (Krüger, 2000) for which a
local scheme is presented in Fig. 1.

In Fig. 1, the electric grid voltagêex(i−1/2, j+1/2, k)

is interpolated in two steps at the location ofˆ̂dy(i, j, k).
In the first step, every pair of electric voltages having the
same coordinate on the x-axis, are interpolated along the
y-axis in the middle (each voltage contributing with a fac-
tor of a half) through an A-type interpolation, building the
voltagesêx(i−1, j+1/2, k) and êx(i, j+1/2, k). In the
second step, these two voltages are interpolated along the
x-axis in the middle (each contributing with a factor of a

Fig. 2. Allocation of both electric grid voltages and electric grid
fluxes relative to a dual FIT cell. Left: before the interpolation.
Right: after the interpolation.

half) through a B-type interpolation, building the voltage
êx(i−1/2, j+1/2, k).

The local interpolation process is expressed by the follow-
ing equation:

êx(i−1/2, j+1/2, k)=
1

4

[
êx(i, j, k)

+êx(i, j+1, k)+êx(i−1, k, k)+êx(i−1, j+1, k)
]
. (8)

Figure 2 shows the allocation of voltages relative to a dual
cell after the interpolation (right-hand side) compared to the
classical allocation (left-hand side).

To globally account the interpolation process, the follow-
ing matrices are defined:

[Qx ]pq =

{
1
2 p=q or p=q+1
0 else

(9)

[
Qy

]
pq

=

{
1
2 p=q or p=q+I

0 else
(10)

[
Qz

]
pq

=

{
1
2 p=q or p=q+IJ

0 else
, (11)

whereI andJ represent the maximum number of grid nodes
in x- and y-directions, respectively (Krüger, 2000). Within
the FIT algorithm, the interpolation matrices will be placed
at the off-diagonal terms in the material operator.

In order to keep the symmetry of the physical permittivity
tensor the off-diagonal terms[M ε]u,v and[M ε]v,u of the dis-
crete material operator have to be equal. The symmetry of
the material operator can be reached through the following
steps:

– Assuming that primary and dual edges in the same di-
rection have the same length, their cancellation leads to
equal grid information in the above-mentioned terms of
the material operator according to Eq. (12).

Ãvw

Lv

=
L̃vL̃w

Lv

=
Ãuw

Lu

=
L̃uL̃w

Lu

≈L̃w. (12)

The approximation introduced in Eq. (12) is given by
Lu=L̃u + O(1), where the first order error term van-
ishes if the grid is equidistant. This condition can be
applied when meshing the human body model because
it consists of cubic voxels.
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Fig. 3. Construction of electric voltages on the grid.

Fig. 4. Top row: electric potential distribtuion. Bottom row: electric
flux density. Left column:εl/εp=1. Middle column: εl/εp=2.
Right column:εl/εp=3

– Averaging the permittivity along the common dual edge
L̃w resulting from the first step leads to equal material
information in the considered terms. The permittivity
average for each off-diagonal term of the material oper-
ator uses the approximation from Eq. (12):

∫∫
Ãuw

ε dA + O(1k+1)∫
Lu

ds + O(1k)
=

ε̄

∣∣∣L̃w

∣∣∣ ∫L̃u
ds∫

Lu
ds

+ O(1k)

≈ ε̄

∣∣∣L̃w

∣∣∣ + O(1k∗

) ≈ ε̄

∣∣∣L̃w

∣∣∣ , (13)

wherek∗
∈ [1, 3].

– Positioning the interpolation matrices within the mate-
rial operator such as to ensure the symmetry regarding
the interpolation process.

Table 1. Electric flux density (max value [C/m2]) given in % rela-
tive to the max value in the case ofεl/εp=3.

εl/εp=1 εl/εp=2 εl/εp=3
dmax [C/m2] 13.5% 60.8% 100%

Taking into account the above considerations, the material
operator becomes:

M ε=

 D̃Ayz Dεxx D−1
Sx

QT
x Dεyx D̃Sz Qy

QT
x Dεzx D̃Sy Qz

QT
y Dεxy D̃Sz Qx

D̃Axz Dεyy D−1
Sy

QT
y Dεzy D̃Sx Qz

QT
z Dεxz D̃Sy Qx

QT
z Dεyz D̃Sx Qy

D̃Axy Dεzz D−1
Sz

 . (14)

This distribution of the interpolation matrices to the off-
diagonal terms ensures the global symmetry of the mate-
rial operator. Due to the permittivity average, when cou-
pling two directions the A-type interpolation is weighted
with the length of a dual edge on the third direction. To keep
the symmetry, the B-type interpolation cannot be length-
weighted. Figure 3 shows that the voltagesêy(i, j−1, k) and
êy(i+1, j−1, k) are built along the dual edgẽLz(i, j−1, k)

and the voltageŝey(i, j, k), êy(i+1, j, k) are built along the
dual edgeL̃z(i, j, k).

6 Simulations

The human body model (HUGO) offered by the simulation
software package CST EMStudio™ (CST GmbH) was used
for the import of a cubic volume of muscle tissues within
a C++ code where the anisotropic FIT was implemented.
The diagonal direction of muscle fibres is described by the
anglesφ=θ=45◦. These muscles were placed in the elec-
trostatic field determined by the imposed potential values
of −10 V and+10 V, at the boundary planesZ= min and
Z= max, through the Dirichlet boundary conditions. All the
other boundaries, were treated with Neumann boundary con-
ditions. Three simulations were performed using the CG
solver from PETSc (Balay et al., 1997) corresponding to
three different values for the ratio between longitudinal and
perpendicular permittivity of muscle tissues with respect to
their fibre direction, i.e.εl/εp=1; 2; 3.

7 Results and discussions

In Fig. 4, the top row presents three scalar plots of the electric
potentials computed inside a muscle volume considered to be
isotropic (left), anisotropic (having the ratioεl/εp=2 (mid-
dle)) and anisotropic (withεl/εp=3 (right)). Comparing the
plots, the equipotential planes were aligned to the direction
of muscle fibers (diagonal direction with regard to the Carte-
sian coordinate system) in the anisotropic cases. The magni-
tude of this alignment depends on the magnitude of the ratio
between longitudinal and perpendicular permittivity (εl/εp).
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The bottom row in Fig. 4 presents three vector plots of
the electric flux density, each computed with the correspond-
ing electric potentials in the same column and scaled to the
same maximum value which was found in the anisotropic
case ofεl/εp=3. Relative to this value, the other maximum
values are given in percentage in Table 1. Compared to the
isotropic case where the electric flux is homogeneous in the
entire muscle volume, in the anisotropic cases, the flux has
higher values along the fiber’s direction.

8 Conclusions

In this paper we presented the anisotropy of muscle tissues
with regard to dielectric permittivity and its mathematical an-
alytic model. This model was further discretized to conform
with the numerical algorithm of the Finite Integration Tech-
nique and implemented in software code. With this code,
more simulations were performed and the results were com-
pared to the isotropic case.
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