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Abstract. In the potential-current representation,
transmission-line parameters in the Transmission-Line
Super Theory (TLST) do not have a direct physical meaning
– they are gauge dependent, i.e.: they are different in the
Lorenz and Coulomb gauge. However, they retain traces of
their classical origin: They are constituted of capacitances
and inductances for forward and backward running waves
along the lines. Therefore their corresponding matrices are
not symmetrical as in the case of classical transmission-line
theory. In the charge-current representation the parameter
matrices have a physical meaning: their elements consist of
damping functions due to the non-uniformities of the lines
and of the propagation functions along the lines, incorpo-
rating conductor and radiation losses. The transmission line
parameters also contribute to the total radiated power of the
lines. The attempt to quantize radiation locally, fails because
radiation describes a long-range (integral) interaction, and
therefore affects all conductor parts of all lines. However,
it can be stated that at stronger inhomogeneities the local
contributions to radiation increase, and are particularly
recognizable along the risers.

1 Introduction

Haase and Nitsch (Haase and Nitsch, 2001) and Nitsch and
Tkachenko (Nitsch and Tkachenko, 2010) have introduced a
Maxwellian (Full-Wave) Theory, the Transmission-Line Su-
per Theory (TLST), for a system of non-uniform transmis-
sion lines. The equations of these theories resemble those of
classical transmission-line theory, but with a completely oc-
cupied parameter matrix. The new transmission line param-

eters are complex-valued; they depend on frequency and on
local coordinates. They can be represented in different repre-
sentations, such as in the potential-current representation or
in the charge-current representation, to name just two. More-
over, the parameters in the potential-current representation
are gauge dependent, and they differ in the Coulomb gauge
from those in the Lorenz gauge.

On the other hand, it was shown (Nitsch and Tkachenko,
2009) that the generalized transmission-line parameters con-
tain all modes which propagate along the lines: TEM-modes,
leaky modes, and radiation modes. Additionally, they are re-
lated to the (measurable) propagation and damping matrices
in a second order differential equation for forward and back-
ward running current waves. Based on the above facts, the
question arises regarding the physical meaning of each pa-
rameter. In classical transmission-line theory they have the
meaning of a capacitance and inductance per-unit length.
This paper considers different aspects to the posed ques-
tion: Sect. 2 presents a brief collection of the equations
in the charge-current representation and in the potential-
current representation, as well as the parameters in their cor-
responding representation. In Sect. 3 the transmission-line
parameters are formulated in both the Lorenz gauge and the
Coulomb gauge. Section 4 shows the relation of the line pa-
rameters to the total radiated power, whereas Sect. 5 gives
numerical examples for the individual contributions of the
parameters in different sections of a line to the radiated power
and for the propagation and damping functions of the consid-
ered line. Finally, Sect. 6 concludes this paper.
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2 Transmission-line super theory equation in different
representations

For the notation in this paper the reader is referred to the pub-
lications (Nitsch et al., 2009), (Rambousky et al., 2014), and
(Nitsch and Tkachenko, 2010). In Nitsch et al. (2009) it was
shown that the Mixed Potential Integral Equations (MPIE)
for thin and lossless multi-conductor lines could be cast into
the form of generalized Telegrapher’s equations, reading:

∂

∂l

[
q ′(l)

i(l)

]
+ jω

[
P11(l) P12(l)

1 0

][
q ′(l)

i(l)

]
=

[
q ′′exc(l)

0

]
(1)

In this equation the parameter l denotes a generalized length
for all lines, q ′(l) is the charge vector per unit-length, the
block matrices P11(l) and P12(l) are the length and fre-
quency dependent complex-valued line-parameter matrices
with units [P11]= s m−1 , [P12]= s2 m−2 , and q ′′exc(l) de-
notes an exterior distributed renormalized excitation source
vector (see below). With the aid of the continuity Eq. (1) can
be rewritten into a second order differential equation for the
current vector i:(
∂2

∂l2
−D ·

∂

∂l
−02

)
· i(l)= i′′S (2)

Here the propagation function matrix 0 is, in general, a com-
plex valued matrix, incorporating losses caused by conduc-
tor losses as well as by radiation. The matrix D describes
damping along the line due to the reflections caused by non-
uniformities (Nitsch et al., 2009). The matrices in Eq. (2) are
related to the matrices in Eq. (1) as follows:

D=−jωP11, [D]= 1/m,

and 02
=−ω2P12, [0]= 1/m (3)

Thus it can be stated that the parameter matrices in Eqs. (1)
and (2) have a physical meaning and can be measured. In
particular, they do not depend on gauge.

The solution of Eq. (1) is also known and results in:[
q ′(l)

i(l)

]
=Ml

l0

{
−jωP

}[
q ′(l0)

i(l0)

]

+

l∫
l0

Ml
l′

{
−jωP

}
·

[
q ′′exc(l

′)

0

]
dl′ (4)

The quantity Ml
l0

is the so-called matrizant or product inte-
gral (see Gantmacher, 1984). In order to obtain a solution of
Eq. (4) one first has to know the parameter block matrix P
and subsequently calculate the (unknown) renormalized dis-
tributed sources q ′′exc(l) from a given exterior field excitation
v′exc of the lines. In the case of low frequencies (k→ 0) this
relation can be easily derived (see Rambousky et al., 2014).
This example starts with one set of the MPIE (the other set is

given by the continuity equation).

1
4πε0

∂

∂l

L∫
0

GC(l, l
′,k)q ′(l′)dl′

+ jω
µ0

4π

L∫
0

GL(l, l
′,k)i(l′)dl′ = v′exc(l) (5)

or in an even more compact form:

[
jω1 1

∂

∂l

]
(N,2N)

L∫
0

G(l, l′,k)
[
q ′(l′)

i(l′)

]
dl′ = v′exc(l), (6)

with the definition of the block matrix

G(l, l′,k) :=
[

0 µ0
4πGL(l, l

′,k)
1

4πε0
GC(l, l

′,k) 0

]
(7)

Now, in the low-frequency limit (k→ 0) Eq. (5) results
into a second order differential equation of the form:(
∂2

∂l2
+C′(l) ·

∂C′−1
(l)

∂l

∂

∂l
+ω2C′(l) ·L′(l)

)
· i(l)

=−jωC′(l)v′exc(l) (8)

Here the capacitance matrix per unit length C′(l) and the in-
ductance matrix per unit length L′(l) are correlated to their
corresponding Green’s functions via:

C′(l)= 4πε0

 L∫
0

GC(l, l
′,0)dl′

−1

(9a)

L′(l)=
µ0

4π

L∫
0

GL(l, l
′,0)dl′ (9b)

Comparing Eq. (8) with Eqs. (5) and (2) one recognizes the
following relations between the distributed sources:

−jωq ′′exc(l)= i′′S(l)≈−jωC′(l)v′exc(l) (10)

Here the first equal sign reflects the continuity equation,
whereas the second (approximately equal) sign shows the
connection between the source in the MPIE Eq. (5) and the
source in Eq. (1) for the charge-current representation in the
low frequency limit. This is an important intermediate re-
sult. Different from classical transmission-line theory one
observes here that the line parameters are local dependent
(but still real and gauge-independent), i.e., the lines are al-
lowed to be non-uniform.
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For the general solution – without any restriction to fre-
quencies – Eq. (4) is inserted for the block column vector[
q ′(l′)i(l′)

]T in Eq. (6), and after some rearrangements one
arrives at:

I21
∂q ′

∂l
+ I22

∂i

∂l
+

(
jωI11+

∂I21

∂l

)
q ′

+

(
jωI12+

∂I22

∂l

)
i+ jωI01+

∂I02

∂l
= v′exc (11)

The matrices Iij (i,j = 1,2) of the block matrix I and the
block vector [I10(l)I20(l)]T are defined through:

I(l) :=
L∫

0

G(l, l′,k)Ml′

l

(
−jωP

)
dl′ (12a)

[I10(l)I20(l)]T :=

L∫
0

G(l, l′,k)

·

l′∫
l

Ml′

l′′

{
−jωP

}
·
[
q ′′exc(l

′)0
]

dl′′dl′ (12b)

Equation (11) together with the continuity equation can
now be written in the desired form Eq. (1) where one obtains
for the parameter block matrix P and the unknown q ′′exc:

P= (13a)[
I−1

21 (I11− I22)+
1
jω

∂I21
∂l

I−1
21

(
I12+

1
jω

∂I22
∂l

)
1 0

]

q ′′exc = I−1
21

(
v′exc− jωI10−

∂I20

∂l

)
(13b)

At this point it seems appropriate to give a brief interpre-
tation of the previous results. The starting point of the above
considerations was the MPIE Eq. (5). From this it could be
demonstrated that – for low frequencies – it obeyed a wave
Eq. (8) for the current. Assuming now that for any frequen-
cies the current fulfills a wave Eq. (2) (forward – and back-
ward running waves for the homogeneous solution), then one
obtains (again with the aid of the continuity equation) the
generalized line equations in the charge-current representa-
tion Eq. (1). However, the line parameters and the sources
are still unknown in this equation. These unknowns are even-
tually derived by insertion of the solution ansatz Eq. (4) in
Eq. (1) and are represented by Eq. (13a, b).

The iterative solution procedures of Eq. (13a, b) are de-
scribed in detail in Nitsch et al. (2009) an can be visualized
in the flow-diagram shown in Fig. 1.

The parameters are derived from the homogeneous prob-
lem of Eq. (1), i.e., without exterior distributed sources.

Figure 1. Flow-diagram of the iterative solution procedure for the
TLST parameter matrix.

Therefore, they do not depend on those sources or on bound-
ary conditions. After knowing the parameters in an appropri-
ate approximation, the renormalized sources are calculated.
The enforced (by the exterior distributed sources) solution of
Eq. (2) (besides the two fundamental solutions) is hidden in
the renormalized sources. The renormalization of the exte-
rior source v′exc in the MPIE is the price which has to be paid
for the fact that the parameter matrix P is solely determined
in the absence of distributed sources (Nitsch and Tkachenko,
2010).

In many cases it is convenient to deal with voltages or po-
tentials instead of a per-unit length charge. For instance, if
the transmission line is embedded into a circuit or if other
elements are connected to the line, the voltages at the termi-
nals must be known to perform the calculations. The connec-
tion between the potential vector ϕ(l) and the special Greens
function GC(l, l

′) is given by:

ϕ(l)=
1

4πε0

L∫
0

GC(l, l
′)q ′(l′)dl′ (14)

Using the above equations this expression becomes[
ϕ

i

]
=

[
I21 I22
0 1

][
q ′

i

]
+

[
I20
0

]
(15)

Equation (15) is valid along the entire line. Therefore, the
telegrapher equations (Eq. 1) can be easily converted into
the potential-current representation. This is the subject of the
next section.

3 The transmission-line parameters in the Lorenz and
Coulomb gauge

Taking the partial derivative of Eq. (15) with respect to l, us-
ing Eq. (1) for the derivative of the column vector

[
q ′i
]T and

replacing q ′ using Eq. (15) then Eq. (1) is converted into the
desired potential-current representation in the Lorenz gauge:

∂

∂l

[
ϕ(l)

i(l)

]
+ jωP∗(l)

[
ϕ(l)

i(l)

]
=

[
ϕ′S(l)

i′S(l)

]
, (16)
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where

P∗ =
[

I11I−1
21 I12− I11I−1

21 I22

I−1
21 −I−1

21 I22

]
(17a)

and[
ϕ′S(l)

i′S(l)

]
=

[
v′exc+ jω

(
I11I−1

21 I20− I10

)
jωI−1

21 I20

]
(17b)

Equations (16) and (17) provide the proof that the MPI
equations can be cast into the form of telegrapher equations.
However, one has to calculate the parameters using Eq. (17a)
and renormalized sources have to be used also for the cur-
rent. These renormalized sources are completely different
from both classical TLT and from the low frequency ap-
proach, where the current source appears as zero. This im-
portant aspect was not discussed in the paper of Shen et al.
(2011). In that paper the authors used incorrect generalized
transmission-line equations and, consequently (in general)
obtained false results.

The next step refers to the derivation of the line parameters
in the Coulomb gauge. In order to indicate the potentials in
their special gauge, they are indexed accordingly. The MPIE
in the Lorenz gauge read:

∂ϕLor

∂l
+ jω

µ0

4π

L∫
0

GL(l, l
′,k)i(l′)dl′ = 0 (18a)

and

ϕLor(l)=−
1

jω4πε0

L∫
0

GC(l, l
′,k)

∂i(l′)

∂l
dl′ (18b)

Introducing the potential in the Coulomb gauge

ϕCoul(l)=−
1

jω4πε0

L∫
0

GC(l, l
′,0)

∂i(l′)

∂l
dl′ (19)

one rewrites the Lorenz potential as

ϕLor(l)= ϕCoul(l)−
1

jω4πε0

·

L∫
0

{
GC(l, l

′,k)−GC(l, l
′,0)

} ∂i(l′)
∂l

dl′ (20)

The derivative of Eq. (20) with respect to l (together with
Eq. 18a) gives:

∂ϕCoul

∂l
−

1
jω4πε0

L∫
0

∂

∂l

{
GC(l, l

′,k)−GC(l, l
′,0)

}

·
∂i(l′)

∂l
dl′+ jω

µ0

4π

L∫
0

GL(l, l
′,k)i(l′)dl′ = 0 (21)

Equations (19) and (21) constitute the (homogeneous) MPIE
in the Coulomb gauge. The next steps follow the concept
(Nitsch and Tkachenko, 2005) applied to calculate the line
parameters of first order in the Lorenz gauge using a per-
turbation theory. Here analogue steps are performed, how-
ever, with the restriction to one conductor to simplify the
derivation. The generalization to N conductors is discussed
in Nitsch and Tkachenko (2010).

The fundamental solutions of the homogeneous MPIE in
classical TLT for the current are forward- and backward run-
ning waves (after the first iteration):

i
(1)
1,2(l)= e

∓jkl and
∂i
(1)
1,2(l)

∂l
=∓jke∓jkl (22)

These results are inserted into Eqs. (19) and (21) yielding:

ϕ
(1)
1,2Coul(l)=−

1
jω4πε0

L∫
0

GC(l, l
′,0)

∂i
(1)
1,2(l

′)

∂l
dl′ (23)

and

∂ϕ
(1)
1,2Coul(l)

∂l
=

1
jω4πε0

L∫
0

∂

∂l

{
GC(l, l

′,k)−GC(l, l
′,0)

}

·
∂i
(1)
1,2(l

′)

∂l
dl′− jω

µ0

4π

L∫
0

GL(l, l
′,k)i

(1)
1,2(l

′)dl′ (24)

From these fundamental solutions in the Coulomb gauge the
line parameters in this gauge can be calculated via the rela-
tion (Nitsch and Tkachenko, 2010)[
X(1)

]
=

[
ϕ
(1)
1 (l) ϕ

(1)
2 (l)

i
(1)
1 (l) i

(1)
2 (l)

]
(25a)

and

P(1)Coul =−
1
jω

∂
[
X(1)

]
∂l

[
X(1)

]−1
(25b)

After some straightforward calculations one obtains the pa-
rameter matrix in the first order approximation:

P
(1)
11Coul(l)= c0

[
L̃′
(1)
+ (l)− L̃

′
(1)
− (l)

]
·

{[
C′
(0)(1)
+ (l)

]−1
+

[
C′
(0)(1)
− (l)

]−1
}−1

(26)

P
(1)
12Coul(l)={

L̃′
(1)
+ (l)

[
C′
(0)(1)
− (l)

]−1
+ L̃′

(1)
− (l)

[
C′
(0)(1)
+ (l)

]−1
}

·

{[
C′
(0)(1)
+ (l)

]−1
+

[
C′
(0)(1)
− (l)

]−1
}−1

(27)

P
(1)
21Coul(l)= 2

{[
C′
(0)(1)
+ (l)

]−1
+

[
C′
(0)(1)
− (l)

]−1
}−1

(28)
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P
(1)
22Coul(l)= c

−1
0

{[
C′
(0)(1)
− (l)

]−1
−

[
C′
(0)(1)
+ (l)

]−1
}

·

{[
C′
(0)(1)
+ (l)

]−1
+

[
C′
(0)(1)
− (l)

]−1
}−1

(29)

In Eqs. (26) through (29) the following expressions for the
approximate inductance and capacitance were used:

L̃′
(1)
± (l)=

µ0

4π

L∫
0

[
∓
j

k

∂

∂l

(
GC(l, l

′,k)−GC(l, l
′,0)

)
+ GL(l, l

′,k)

]
e∓jk(l

′
−l)dl′ (30)

C′
(0)(1)
± (l)= 4πε0


L∫

0

GC(l, l
′,0)e∓jk(l

′
−l)dl′


−1

(31)

As can be seen, the parameters consist of the inductances and
capacitances of forward and backward propagating waves
along the lines. In general these quantities are different for
the two waves, except in the case of lines with a high lo-
cal symmetry, such as an infinite parallel line above ground.
The diagonal parameter matrix elements are differences of
the inductances and capacitances for forward and backward
running waves, respectively. For both wave types, if these el-
ements are equal they will vanish. Analogue arguments also
hold for the parameter in the Lorenz gauge.

However, the parameters in the Coulomb gauge differ from
those in the Lorenz gauge. The denominators of the Coulomb
parameters are all real whereas the parameters which con-
tain inductance terms are complex-valued. Due to the in-
stantaneous relation of potential and charge in the Coulomb
gauge, the parameter P (1)21Coul(l) is pure real (Kazemzadeh
and Mathis, 2009) and therefore does not contribute to radia-
tion. This is different for parameter P (1)12Coul(l) which is pure
imaginary and therefore contributes to radiation. A com-
parison of parameters in both gauges for an infinite loss-
less TL above conducting ground was given by Nitsch and
Tkachenko (2004). The next section deals with the role of
the parameters in the Lorenz gauge in the radiated power of
a transmission line.

4 Radiated power of a non-uniform transmission-line
and contribution of each individual conductor
segment to the radiated power

With the knowledge of the parameter matrix (in the Lorenz
gauge) P∗(1)(l,ω) as a function of the arc length l (or gen-
eralized length parameter for a multi-wire configuration) and

frequency ω one can calculate the total radiated power of the
line using the formula (Nitsch and Tkachenko, 2010)

Prad(ω)= j
ω

4

L∫
0

[
ϕ+

(
P∗(1)22 −P∗(1)+11

)
i

+ i+
(

P∗(1)11 −P∗(1)+22

)
ϕ+ i+

(
P∗(1)12 −P∗(1)+12

)
i

+ ϕ+
(

P∗(1)21 −P∗(1)+21

)
ϕ
]

dl (32)

Here the quantities i+ and ϕ+ denote the transposed com-
plex conjugate values of the current and potential vectors i

and ϕ. The sub matrices P∗(1)+ij are the transposed complex

conjugate sub matrices P∗(1)ij . If one reduces the number of
conductors to one line (plus reference) then the radiation for-
mula becomes:

Prad(ω)=−
ω

2

L∫
0

[
=

(
P
∗(1)
12

)
|i|2+=

(
P
∗(1)
21

)
|ϕ|2

+ =

(
ϕ
(
P
∗(1)
11 −P

∗(1)†
22

)
i†
)]

dl (33)

The sign † stands for the complex conjugate of a complex
scalar. For a numerical calculation of Eqs. (32) and (33) the
integral along the whole arc-length L is replaced by a sum-
mation over all segments of the line. Assume the line is di-
vided into Nseg segments. Then lj denotes the arc length of
the center position of the j th line segment with length 1j .
For the radiated power one gets:

Prad(ω)=−
ω

2

Nseg∑
j=1

[
=

(
P
∗(1)
12 (lj ,ω)

)
|i(lj ,ω)|

2

+ =

(
P
∗(1)
21 (lj ,ω)

)
|ϕ(lj ,ω)|

2

+ =

(
ϕ(lj ,ω)

(
P
∗(1)
11 (lj ,ω)−P

∗(1)†
22 (lj ,ω)

)
i†(lj ,ω)

)]
1j (34)

It is well known that radiation is an integral problem. If
one, however, assumes for a moment that the radiation of in-
dividual line segments would have a meaning, then it would
make sense to calculate the radiated power of these segments.
Especially at strong inhomogenities of the conductor one
would expect a stronger radiation than in largely homoge-
neous zones (experimentally shown in Schwark et al., 2008).
The radiated power resulting from the j th line segment and
for frequency ω then would be:

Prad(j,ω)=−
ω

2

[
=

(
P
∗(1)
12 (lj ,ω)

)
|i(lj ,ω)|

2

+ =

(
P
∗(1)
21 (lj ,ω)

)
|ϕ(lj ,ω)|

2

+ =

(
ϕ(lj ,ω)

(
P
∗(1)
11 (lj ,ω)−P

∗(1)†
22 (lj ,ω)

)
i†(lj ,ω)

)]
1j (35)

If one identifies the off-diagonal elements of the parameter
matrix with inductance and capacitance per unit-length, re-
spectively then the summands of Eq. (35) could be identified
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Figure 2. Parallel line above PEC ground with risers at each end.

as:

Prad,ind(j,ω)=−
ω

2
=

(
P
∗(1)
12 (lj ,ω)

)
|i(lj ,ω)|

21j (36)

Prad,cap(j,ω)=−
ω

2
=

(
P
∗(1)
21 (lj ,ω)

)
|ϕ(lj ,ω)|

21j (37)

In addition the radiated part of the diagonal parameters then
becomes:

Prad,diag(j,ω)=−
ω

2
1j

· =

(
ϕ(lj ,ω)

(
P
∗(1)
11 (lj ,ω)−P

∗(1)†
22 (lj ,ω)

)
i†(lj ,ω)

)
(38)

By analyzing the proportions Eqs. (36) through (38) to the
radiated power of a segment one could determine to what
extent the individual parameters contribute.

5 Radiation, damping and propagation function for
two simple conductor configurations – numerical
examples

The first line configuration starts with a parallel conduc-
tor above perfectly electrical conducting (PEC) ground, with
two risers terminated with 50 Ohms at both ends and fed by
a 1 V source (see Fig. 2) on the left side. The dimensions of
the conductor parts are specified.

Figure 3 displays the total radiated power in the fre-
quency range between 100 MHz and 1 GHz calculated using
Eq. (34). One recognizes clearly the resonances of the con-
ductor and an increase of the radiated power with increasing
frequencies.

Figures 4 and 5 show the radiation contributions of the
individual conductor segments for a frequency of 1 GHz.

One can see that most radiation Prad(j,ω) takes place – as
expected – at the ends of the conductor. The oscillating ca-
pacitive contribution Prad,cap(j,ω) always stays in the neg-
ative regime, whereas the inductive part Prad,ind(j,ω) oscil-
lates in the positive regime, in phase with the capacitive part.
In the asymptotic region of the conductor there is nearly no
radiation. This is indicated by a pure oscillation of the power

Figure 3. Total radiated power in the frequency range of 100 MHz
to 1 GHz.

Figure 4. Different radiation contributions along the line from
Fig. 2 at a frequency of 1 GHz.

Figure 5. Capacitive and inductive radiation contributions along the
line from Fig. 2 at a frequency of 1 GHz.
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Figure 6. Damping function D along the line from Fig. 2 at a fre-
quency of 1 GHz.

Figure 7. Magnitude of the damping function |D| along the line
from Fig. 2 for the frequencies 100, 500 MHz and 1 GHz.

around the local axis, showing that all energy is transported
along this part of the line. The off-diagonal elements act es-
sentially at the ends of the conductor. Note that radiation is
an integral problem. This means that local, individual emis-
sion proportions do not have any physical meaning. How-
ever, they identify those portions of the line, where more
or less radiation occurs. The observable quantities, damping
function D and propagation function 0, are represented in
the following figures.

Figures 6 and 7 represent the damping function D for dif-
ferent scales of the y axis.

Obviously, damping almost vanishes in the asymptotic
regime of the line. It is strongest at the ends of the line, due
to the strong change of the capacitance (see Eq. 8). And, as
can be seen in Fig. 7, it increases with frequency.

It might be interesting to compare the shape of the damp-
ing function with that of the radiated power stemming from

Figure 8. Comparison of the graphs for the damping function |D|
and for the radiated power of the diagonal elements |Prad,diag| (for
the line from Fig. 2 at a frequency of 1 GHz).

Figure 9. The magnitude of the propagation function |0| for differ-
ent frequencies (for the line from Fig. 2).

the diagonal parameter elements. In both cases the local
change of the line configuration is important. In Fig. 8 one
can see the similarity of both shapes.

The second measurable quantity is the propagation func-
tion0 which is represented in Fig. 9 for different frequencies.
In the asymptotic region of the line the current waves propa-
gate with the velocity of light. However, in the vicinity of the
ends an interesting behavior is observed: The current waves
(apparently) become faster than the speed of light c. This
happens due to the radiation coupling between the riser and
the horizontal part of the line. This coupling path is shorter
than the path for the current waves through the end of the
conductor and the riser. But, finally, the current waves are
stopped along the risers and are reflected at the ends.

The next numerical example deals with a parallel line with
two risers and a central local scatterer above PEC ground,
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Figure 10. Parallel line over conducting ground with two risers and
a central local scatterer (90◦ bend).

Figure 11. Total radiated power for a parallel line with and without
a central local scatterer (90◦ bend).

terminated at both ends with 50 Ohms (see Fig. 10) and fed
by a voltage source of 1 V.

The bend in the line increases the radiated power (red
curve in Fig. 11) compared to the emitted power of the line
without bend (blue curve in Fig. 11).

Figure 12 shows the individual contributions of the line
segments to the radiated power. The graphs look similar to
those of Fig. 4, except around the central bend. There the
radiated power increases slightly.

Similar arguments hold for the damping function D of
Fig. 13. An increased damping can be noticed at the ends
as well as at the bend. This becomes more obvious in Fig. 14
where the damping function is represented again, but with
a finer scale of the y axis and for different frequencies. The
damping at the central scatterer increases with increasing fre-
quency as would be expected.

In Fig. 15 it is shown again that at those locations where
damping becomes stronger the radiation contribution of the
diagonal parameter elements also increases. Finally, Fig. 16
displays the graphs showing the magnitude of the propaga-
tion function 0 for the frequencies 100, 500 MHz and 1 GHz.

Figure 12. Different radiation contributions along the line from
Fig. 10 for a frequency of 1 GHz (total, inductive, capacitive, con-
tribution of the diagonal elements).

Figure 13. Damping function D along the line with central local
scatterer.

As in the previous line configuration, the current waves
propagate with the speed of light c in the asymptotic re-
gions. Close to the risers and around the area of the bend
the waves seem to run faster than c. Again, this happens be-
cause of the radiation interaction between line elements in
the vicinity of the bends. The propagation path for the radi-
ated power between the line elements near the sharp bend is
shorter than the path for the current waves flowing through
the bend. Therefore, the current induced by this radiation al-
ready occurs a little earlier than that part of the current which
continues to flow through the bend. The change of speed be-
comes stronger with increasing frequency.

6 Conclusions

This paper focused on the question of the physical mean-
ing of the line parameters in the TLST. The meaning of the
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Figure 14. Magnitude of the damping function |D| along the line
with central local scatterer for different frequencies (200, 500 MHz,
1 GHz).

Figure 15. Magnitude of the damping function |D| in comparison
with the magnitude of the radiated power from the diagonal ele-
ments.

parameters depends on the representation of the TLST equa-
tions. In the charge-current representation the two line pa-
rameters were directly correlated to measurable quantities:
namely, the propagation function 0 and the damping func-
tionD. Therefore, this representation is the most suitable for
application. In the case of low frequencies (k→ 0) there is
an algebraic relation between the potential (voltage) and the
charge via the capacitive matrix (see Eqs. 9a and 10). Thus,
with the aid of Eqs. (6) through (10) the charge-current rep-
resentation is easily transferred into the potential(voltage)-
current representation with the parameter matrix P∗(0)(l).
Here, there are zeros in the diagonal matrix while the off-
diagonal matrices represent the (symmetrical) inductance
matrix and the (symmetrical) capacitance matrix, respec-
tively. Both matrices have a known physical meaning. The
situation changes for high frequencies when radiation occurs.

Figure 16. Magnitude of the propagation function |0| at different
frequencies for the parallel line with central local scatterer.

In this case, the former algebraic relation changes to an inte-
gral relation (see Eq. 14) and the potential-current equations
are given by the more complicated Eqs. (16) and (17a, b).
Now the line parameters lose their direct physical meaning
and are gauge dependent. Only in combinations they can be
related to physical observables, like radiation or propaga-
tion function and damping function (Nitsch and Tkachenko,
2005). The more fundamental reason that the parameter ele-
ments lose their direct contact to physical observables lies in
the fact that forward- and backward-running current waves
have (in general) different capacitances and inductances (see
Eqs. 26 to 29). This applies both in the Coulomb gauge
as well as in the Lorenz gauge. The fact that forward and
backward-running current waves have different inductances
and capacitances leads to non-symmetrical parameter sub-
matrices (P∗(1)ij,Lor and P∗(1)ij,Coul, i,j = 1,2). However, the ref-
erence to the quantities inductance and capacitance, known
from classical TLT, remains intact. In TLST the parameters
are composed of combinations of capacitances and induc-
tances for forward and backward running waves.
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