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Abstract. In recent years, the lidar sensor has been receiving
greater attention as being one of the prospective sensors for
future intelligent vehicles. In order to enable advanced appli-
cations in a variety of road environments, it has become more
important to detect various objects at a wider distance. There-
fore, in this research we have focused on lidar signal pro-
cessing to detect low signal-to-noise ratio (SNR) targets and
proposed a higher sensitive detector. The detector is based on
the constant false alarm rate (CFAR) processing framework
in which an additional functionality of adaptive intensity in-
tegration is incorporated. Fundamental results through static
experiments have shown a significant advantage in the detec-
tion performance in comparison to a conventional detector
with constant thresholding.

1 Introduction

In hopes of achieve safe, comfortable, and convenient vehi-
cle transportation in the near future, the highly automated
driving or autonomous driving systems have been receiv-
ing greater attention in recent years. The research has at-
tracted increased attention and has been accelerated by the
DARPA (Defense Advanced Research Projects Agency) Ur-
ban Challenge, where the fundamental experimental vehicles
equipped with special devices and software have been proto-
typed by participants mainly from research institutes (Levin-
son et al., 2011). Moreover, several advanced car manufac-
tures and innovative IT companies have evolved the tech-
nologies and implemented them in their prototype vehicles,
which have been driven on privileged parts of public roads in
order to investigate their functionality and capability before
introducing them into the market (Ziegler et al., 2014a). As
such the automated system basically consists of several sub-
functions such as environment perception, behavior plan-

ning, and vehicle control. Among them, the perception of
ego-vehicle surroundings is a crucially important task in the
front-end processing of the whole system, by which accurate
and robust 360◦ perception is required and approached by in-
tegrating several types of electro-magnetic sensors, a global
navigation satellite system (GNSS), and precise digital maps
(Ziegler et al., 2014b; Dickmann et al., 2015).

The important role of the sensors is to detect dynamic ob-
jects or events that have not been registered in the digital map
beforehand, and the scope of the objects is expected to be en-
larged according to the functional advancement and the ex-
pansion of the application filed. For example, temporary ex-
isting on-road objects (e.g., tires, boxes), which are in most
cases left by other traffic participants who have traveled on
the road before, are going to be in the next scope. In order to
detect such wide variations of objects at a significantly wider
distance, sensors are required to improve detection sensitiv-
ity; therefore, various technologies are being developed in
the field of automotive lidar technology.

The straight-forward approach is to improve the detec-
tion sensitivity of optical devices and systems on the hard-
ware that high power (with eye-safe) laser diodes, high sen-
sitive photo detectors, and advanced scanning systems are
being developed. These hardware technologies contribute to
enlarging the received intensity from the detection target
and also decrease the background noise in the signal, which
means the signal-to-noise ratio (SNR) is improved. In general
terms, this innovation has a high potential to achieve signif-
icant improvements with a low negative impact on the cost
and dimensions of the hardware in the future.

The other approach is the signal processing, which deals
with the sensor raw data before the point measurements. The
common technique used to increase the SNR is digital filter-
ing. If the frequency characteristics of the echo signal and
background noise are significantly decoupled, a properly de-
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Table 1. Basic specification of lidar.

Terms Specifications

Detection range 40 m at 10 % reflectivity

Field of view
Azimuth: 40◦

Elevation: 8◦

Angular resolution
Azimuth: 0.1◦

Elevation: 1.0◦

Update frequency 10 Hz

signed low-pass filter or band-pass filter enables one to in-
crease the SNR. Furthermore, the coherent integration is also
known as an effective method that enhances the SNR by in-
tegrating multiple signals derived from an identical target in
the spatial or temporal domain. This integration performs ef-
fectively if the sensor has significantly high spatial or tempo-
ral resolution.

Furthermore, on the final stage of signal processing, a
thresholding is applied to the raw data to generate point mea-
surements that represent the existence of an existing target
and its corresponding distance from the sensor. Since the
detector is expected to achieve a high detection rate of the
target with a low false detection rate, the threshold is re-
quired to be adjusted at a proper level considering the state
of the background environment. The constant false alarm
rate (CFAR) detector is a well-known effective approach for
such a problem, and has been applied to automotive radar ap-
plications (Rohling and Mende, 1996). It is a method of adap-
tive thresholding by which the background uncertainty is dy-
namically calculated, so that it improves detection perfor-
mance on a lower SNR target by applying the proper thresh-
olding.

In this paper, we discuss the signal processing for li-
dar sensors, which especially detects objects with time-of-
flight (TOF) measurements, whose brief explanation is writ-
ten in Sect. 2. Section 3 describes the basic CFAR algorithm,
and an algorithm developed in this research, which unifies
the functionality of signal integration with background esti-
mation in the CFAR framework is presented in Sect. 4. The
performance evaluation of the developed detector using real
sensor data is described in Sect. 5. Finally, this paper is con-
cluded in Sect. 6 with the summary and future plans for this
research.

2 Lidar

A basic specification of the lidar used in this research is listed
in Table 1. It is an automotive lidar prototyped by DENSO
Corporation, which is supposed to be utilized in various ap-
plications for advanced vehicle safety, e.g., pedestrian detec-
tion and tracking (Ogawa et al., 2011). The lidar emits laser
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Figure 1. Example of raw intensity measurement and detection threshold at single bearing (solid blue line: 3 

intensity, dashed red line: threshold) 4 
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Figure 1. Example of raw intensity measurement and detection
threshold at single bearing (solid blue line: intensity; dashed red
line: threshold).

beams into the vehicle’s surroundings with two-dimensional
(2-D) scanning with 401 azimuth and 8 elevation angles. It
detects objects that may exists, and measures the distance and
intensity in each bearing based on the time-of-flight princi-
ple. If the sensor is installed inside the vehicle cabin behind
a windshield with 5 % transmittance, the detection range of a
target with 10 % reflectivity is about 40 m.

During the observation at each bearing, the received in-
tensity is temporally sampled by an analog-to-digital con-
verter (ADC) with a certain time interval. The sets of the
sampled intensities at every scan bearing are stored in an in-
ternal memory as raw data. Figure 1 shows an example of the
raw data (solid blue line) at a certain bearing together with a
conventional detection threshold (dashed red line), which de-
clares the existence of an object. The intensity value on the
vertical axis is digitized by the ADC after its offset bias is
compensated. The threshold is consistent over all range bins,
which is dynamically adjusted at every scan bearing in order
to control the false alarm rate by analyzing its background
noise intensities. Assuming the probability density function
of the noise to be an ideally zero mean Gaussian distribu-
tion, its standard deviation is calculated and utilized to set the
threshold. In this paper, the threshold is set at the level cor-
responding to 5 times the standard deviation above ground
level, where the probability of false alarm at every sampled
point of intensity is theoretically on the order of 10−5. This
constant-thresholding method is referred to as the conven-
tional detector for performance evaluation in Sect. 5.

Here the physical process of the observation is explained
by the lidar equation. The basic form of the equation is

P(r)= C
β(r)

rn
exp(−2τ), (1)

where P(r) is the intensity of optical energy received from a
target at range r , β(r) is the backscatter coefficient, and τ is
the optical thickness. C is a constant depending on the lidar
system determined by the transmitting laser power, pulse du-
ration, optical efficiency of the receiver, etc.; n is an integer
between 2 and 4, which is determined by the geometrical re-
lationship between the dimension of the emitted laser beam
and the cross section of the target. If the beam size at the
target distance is sufficiently larger than the cross section in
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Figure 2. Basic configuration of CFAR sliding operator 2 
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Figure 2. Basic configuration of CFAR sliding operator.

both dimensions of azimuth and elevation, it is set to 4, and
if the beam size is smaller in both dimensions, it is set to 2;
otherwise, it is determined to be 3. Equation (1) represents
the dynamics of the received intensity in inverse proportion
to the nth power of the distance to the target, and therefore it
links the increase on detection range and SNR improvement.

3 CFAR algorithms

The CFAR algorithm is widely used in modern radar sig-
nal processing. It enables an adaptive thresholding by learn-
ing the state of the background, so that it suitably works in
clutter, interference, or other uncertain environments. The
threshold adaptation is performed by applying a cell oper-
ator to the sensor raw data based on a sliding window tech-
nique. The basic design of the operator consists of a cell un-
der test (CUT), guard cells, and training cells, where each
cell corresponds to a certain range bin on which the intensity
is discretely sampled by ADC. A basic configuration of the
operator is shown in Fig. 2.

The CUT is a point where the target existence is evalu-
ated. The training cells refer to the intensities around the
CUT in order to locally and statistically evaluate the back-
ground level. Based on these background intensities, a sin-
gle or multiple representative parameter of the background
is calculated, for example, the average (e.g., mean) value or
rank-ordered value (e.g., median) of the intensities. The for-
mer is called cell averaging CFAR (CA-CFAR) and the latter
is referred as ordered statistic CFAR (OS-CFAR), whereas
the OS-CFAR is generally recognized as the more robust
technique in multiple-target situations (Rohling, 2011). Fur-
thermore, other derivations and combinations to achieve bet-
ter background estimation with lower computational effort
have been investigated (Cao et al., 2010; Rohling, 2013). The
remaining guard cells work as a range margin in order that
the intensities of training cells are not affected by an exist-
ing object at around CUT. Then, the detection threshold is
determined above the adaptively estimated background level
at each point, and its procedure is generally classified into
two types. One is a parametric determination of the thresh-
old based on the statistical characteristics of the background,
and the other is a non-parametric by which the threshold is

Figure 3. General configuration of CFAR processing.
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Figure 4. Extended operator with neighbor cells for intensity integration 2 
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Figure 4. Extended operator with neighbor cells for intensity inte-
gration.

experimentally determined. The general configuration of the
CFAR processing is illustrated in Fig. 3.

4 The extended CFAR detector

Aiming to improve the detection performance on a low-SNR
target, we propose an extended CFAR detector that enables
one to incorporate an additional functionality of intensity in-
tegration. In order to implement this additional processing on
the CFAR framework, the sliding cell operator is extended
with supplemental neighbor cells, as shown in Fig. 4. The
neighbor cells are added around the CUT in order to spec-
ify the region of the intensity integration, where the size is
determined depending on the situation. Moreover, a positive
numerical value is assigned to every cell of the region, which
determines the weight of the integration. Then, the intensity
after the weighted integration at the CUT is evaluated in an
orderly manner with the CFAR adaptive thresholding. This
extended processing is applied in both the range and bearing
domain; therefore, the operator forms a 2-D window.

4.1 Range domain processing

One of the physical characteristics on raw intensity measure-
ments of the lidar used in this research is that the tempo-
ral pulse width of a target echo is correlated to its ampli-
tude, where in general the pulse width expands broader as
the amplitude becomes higher. Therefore, focusing on this
phenomenon, the intensity is integrated over neighboring
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Figure 5. Intensity integration in range domain.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Intensity integration in bearing domain.

range bins, depending on the intensity at the CUT, as shown
in Fig. 5.

The number of range bins for integration, which corre-
sponds to the sum of the CUT and neighbor cells, is calcu-
lated with the following equation:

N range
=

{
N

range
min if iCUT ≤ Ith

N
range
min + 2 · ceiling

(
log10 (iCUT/Ith)

)
else

, (2)

where iCUT is an intensity measurement at the CUT, and
Ith is a conventional detection threshold described in Sect. 2.
N

range
min is an odd integer that defines a minimum number of

range bins for the integration, which is set to 7 in Sect. 5
for performance evaluation. Next, the integration weighting
factor at every bin is calculated according to an expected in-
tensity derived from the target echo profile model in the fol-
lowing equations:

w
range
kr
= w

range
kr

/
∑
kr

w
range
kr

, (3)

w
range
kr
=

1
√

2π
exp

{
−

1
2
·

(
kr

((N range− 1)/2)
d

)2
}
. (4)

kr is an integer value of the range bin index between
± (N range

− 1)/2, which takes 0 if the bin corresponds to the
CUT and a non-zero value for the neighboring range bin
around the CUT. Equation (4) represents the echo profile
model based on Gaussian shape, where d is a positive tun-
ing parameter that defines a degree of the pulse extent in

the range domain. This integration process nearly works as
model-based filtering, which enables one to emphasize the
intensity at the CUT if the target exists, otherwise it sup-
presses the noise intensity if no target exists.

4.2 Bearing domain processing

The integration processing over neighbor bearing bins is
based on the geometrical relationship between the spatial res-
olution of the sensor observation and dimension of the rele-
vant target for each application. Indeed, given a certain mini-
mum size of the target, several coherent signals are obtained
at multiple bearings if the target is detected as an extended
target when it exists at a certain scope of the range. Thus, as
shown in Fig. 6, the intensity integration is carried out over
these bearings when the coherent intensities from the target
are potentially available.

Here the number of bearings where the intensities are in-
tegrated is dependent on the range of the CUT, which is cal-
culated in the following equations:

Nbearing
=


1 if n≤ 1
N

bearing
max if n≥Nbearing

max

floor(n)+ 1 if 1< n < Nbearing
max & floor(n)mod2= 0

floor(n)+ 2 if 1< n < Nbearing
max & floor(n)mod2 6= 0

, (5)

n=
w

r ·1θ
. (6)

n is a potential number of the bearings that the target could
exist in front, r is the range of the CUT,1θ is the azimuth an-
gle resolution of the sensor observation, and w is a minimum
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Figure 7. Example of calculation results by conventional (upper
panel) and extended detector (lower panel).

Figure 8. Experimental setup.

width of the assuming target, which is set to 0.3 in the fol-
lowing evaluation. Nbearing

max is an odd integer, which defines
the maximum number of bearings for integration, which is
set to 5. Then the corresponding weighting factor of the inte-
gration wbearing

k is calculated with the following equations:

w
bearing
kb

= w
bearing
kb

/
∑
kb

w
bearing
kb

, (7)

w
bearing
kb

=

{
(n−floor(n))/2 if |kb| =

(
Nbearing

− 1
)
/2

1 else . (8)

kb is an integer value of the bearing bin index between
± (Nbearing

− 1)/2, which takes 0 if the bin corresponds to
the CUT and a non-zero value for neighboring bearing bin
around the CUT.

4.3 Decision-making

An example of the calculation results by the extended detec-
tor in comparison to the conventional constant thresholding
is shown in Fig. 7.

In the upper chart, the raw intensity measurement (solid
blue) and its conventional detection threshold (dashed red
line) are shown, and in the lower chart, the intensity after the
integration (solid blue), the adaptive threshold (dashed red)
as well as the calculated baseline of the background (dashed
light blue) are represented. Note that the red arrow means a
target is detected, where its range cell and intensity indices
are the numbers in the bracket. Comparing the results be-
tween before and after the integration, a certain degree of
SNR improvement is recognized, which is remarkably seen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Example of ROC curves (blue: proposed, gray: conven-
tional).

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison on TP rate (blue: proposed, gray: conven-
tional).

around the target. With regard to the manner of the thresh-
old determination for the extended detector, the parametric
approach mentioned in Sect. 3 is used. Given a standard de-
viation of the background noise on the raw intensity as well
as the integration weighting factors calculated by Eqs. (3)
and (7), the substitute standard deviation of the noise after
the integration is calculated with the following equations:

σ ′ =

√√√√∑
kr,kb

(
wkr,kb/

∑
kr,kb

wkr,kb

)2

σ, (9)

wkr,kb = w
range
kr
·w

bearing
kb

, (10)

where σ is the standard deviation of the raw intensity, wkr

and wkb is the integration weighting factor at the neighbor
bin index of kr and kb. Therefore, the threshold is set above
the background baseline at the level corresponding to 5 times
of the standard deviation σ ′. Thus, the adaptive threshold is
determined depending on the integration process and it gen-
erally becomes larger as the distance increases. The number
of bearings of the integration is decreased at further distance,
while the number of range cells integrated is also smaller,
since the target intensity becomes lower.
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Figure 11. Example of point measurements (middle chart: proposed; right chart: conventional).

5 Evaluation

We have evaluated the performance of the proposed detec-
tor, described in Sect. 4, by comparing to the conventional
constant-thresholding detector, mentioned in Sect. 2.

5.1 Setup

The experimental setup is shown in Fig. 8. The test vehicle
is equipped with the lidar behind the windshield inside the
cabin and remains stationary during the experiment. The de-
tection target is about 0.5 m wide and 1.75 m high with 10 %
diffuse reflection in the near-infrared band, which is utilized
in this lidar. The target is placed in front of the vehicle at
5 m intervals and is observed for 30 s at each point. The col-
lected raw data are processed by both the conventional and
proposed detector, and these results are compared.

5.2 Results

At first, we compare the receiver operating characteris-
tics (ROC) curves of both detectors by handling the detection
threshold parameters. Here, we define the true positive (TP)
rate as a ratio between the number of data frames in which
the target is detected and the total number of the data frames.
Meanwhile, the false positive (FP) rate is a ratio between the
number of range bins with false detection and the number
of bins where no target exists, which is based on whole data
frames. Specifically, the total number of range bins behind
the target in all the data frames is the denominator for the FP

calculation. Additionally, note that only one bearing, where
the target is present in front, is considered for both the TP
and FP calculation. Subsequently, based on these definitions,
Fig. 9 shows the ROC on the condition that the target stands
at 60 m distance, where the conventional detector does not
significantly detect the target because of degrading SNR on
the observed intensity. The difference of two curves is clearly
recognized, which means that the detection performance is
significantly improved by the proposed detector.

Next, we have set the threshold parameters as both the de-
tectors have almost the same FP rate of 10−5, and then the
TP rate has been respectively calculated at every target dis-
tance. Figure 10 shows the results, where the detection rate
of both detectors at closer than 35 m is nearly 1 and grad-
ually degrades with further distance. Comparing the range
with TP rate of 0.8, for example, it is extended from approx-
imately 40 to 50 m. According to the lidar equation (Eq. 1),
this improvement is interpreted as an approximately 50 %
lower SNR target becomes detectable by the proposed ap-
proach.

Finally, both the detectors are compared on point measure-
ments after the thresholding. Figure 11 visualizes an example
of the point measurements with a bird’s-eye view, together
with the charts of intensity and threshold for both the detec-
tors at the same bearing as well as the corresponding forward
image. The color of the points in the bird’s-eye view corre-
sponds to the bearing of the elevation scan, and, for reasons
of better visibility, only the measurements of the upper four
bearings are plotted. By comparing the number of the mea-
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surements on both views, the proposed detector produces a
larger number of measurements and almost no false detec-
tion appeared in this scene. In particular, a significant im-
provement is recognized in the measurements of the walk-
ing pedestrian, the wall of the building, the road surface, and
grass, which have become detectable at a wider distance or
are newly available by the proposed detector.

6 Conclusions

In this paper, we have discussed lidar signal processing to
detect a low SNR target. The developed detector works in
the CFAR framework and is extended by incorporating an
additional functionality of adaptive signal integration. The
results of fundamental experiments have shown a significant
improvement on the detection performance, which leads to
obtain further point measurements.

In the future, we will continue further development of the
signal processing to improve the sensitivity of the detector.
Especially, the method to enhance the signal from the target
is further considered, e.g., by integrating temporal domain
processing into the detector.

7 Data availability

The data used in this research are provided by DENSO
Corporation under a research and development agreement
with Chemnitz University of Technology; therefore, the data
are not publicly accessible.
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