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Abstract. It is well known from classical transmission line

theory, that transmission lines can be folded into impedances

and thereby used in an electrical network setting. But it is

also possible to create large networks of transmission lines

consisting of tubes and junctions. The tubes contain the trans-

mission lines and the junctions consider the mutual influ-

ences of the adjacent tubes or the terminals. The calculation

of the currents and voltages at the junctions can be performed

with the help the BLT-equation. So far this method is not ap-

plicable for nonuniform transmission lines described in a full

wave method, because the lack of a distinct voltage gives no

possibility for junctions. Junctions only make sense, when

the considered network offers the possibility to propagate

a TEM-Mode. If this requirement is fullfilled, nonuniform

transmission lines could be included in an electrical network.

This approach is validated in this paper in form of numerical

simulations as well as measurements.

1 Introduction

In classical transmission line theory the input impedance

of any line can be calculated at any position. Through this

method the line itself can be used in an electrical network to

calculate the necessary power at the load. By using the input

impedance transmission lines can also be branched. Since

voltage and current are distinct at every position along the

line branch points can be included to combine transmission

lines and to build complex networks. These branch points

are called junctions and consider the mutual influences of

the branched transmission lines. Such a network can be com-

puted with the aid of the BLT-equation, as shown in Tesche

et al. (1997, Sect. 6).

When the transmission line is not homogeneous the clas-

sical theory is no longer suitable. With a full wave approach

all mutual effects of the line are considered, a reduction of

the line through the input impedance is not accurate. For

the impedance a distinct voltage is necessary, but in a full

wave method only potentials exist. But under certain circum-

stances a nonuniform line can also be reduced, similar to

a classical transmission line. It is also possible to include

nonuniform lines with branches. This will be shown in the

following sections.

The first section gives a brief overview of the Transmi-

sion Line Super Theory, a full wave method. In the follow-

ing section parts of a nonuniform line are combined into an

impedance similar to the classical theory. The results will

show, that such an approach is valid. Following the collaps-

ing of the line, a simple network with one branch will be

investigated and treated numerically.

2 Transmission Line Super Theory

Transmission Line Super Theory (TLST) is a concise ana-

lytic method to obtain the potential and current along nonuni-

form wires, as described in Nitsch and Tkachenko (2010).

These wires are approximated as thin wires with infinite con-

ductivity.

Given are n wires above an infinitely conducting ground

plane. The scalar potential φ has the form
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Figure 1. Arbitrary wires above groundplane.
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Figure 1. These functions depend on the natural arc length li ,

the integration variable l′i and on k =
2πf
c

, with the speed of

light c and frequency f .

The vector potential A is also needed

A=
µ0

4π
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with et,i the tangential vector of wire i

et,i =
∂r i(li)

∂li
(5)

evaluated on the surface of the wire. Inserting the equation

for A (Eq. 4) into the equation for the electrical field

E =Esc
+Eexc

=−∇φ− jωA+Eexc (6)

gives a general equation for the E-field. On the surface of the

wire, the boundary condition is

ni ×Ei(ri(li)+ e⊥,i(li)a)= 0 (7)

Figure 2. Point of evaluation.

with radius a of the wire, Fig. 2.

If the radius a is very small, then the tangential vector on

the surface of the wire is very close to the tangential vector

of the center of the wire. Thus, the boundary condition can

be simplified to

et,i(li) ·Ei(r i(li))= 0 (8)

and it follows an integral equation for φ and I
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+ jω
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With the help of this equation and Eq. (1) one obtains a cou-

pled differential equation with varying coefficients P similar

to the classical transmission line equations

d

dl

(
φ(l)

I (l)

)
+ jω

(
P 11 P 12

P 21 P 22

)(
φ(l)

I (l)

)
=

(
vexc(l)

0

)
, (10)

as shown in Nitsch and Tkachenko (2010). Solving this equa-

tion gives the potential and current for every conductor with

respect to the matricant, Gantmacher (1960), which depends

on the common parameter l

li =
Li

L
l 0≤ l ≤ L, (11)
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Figure 3. Geometry of a nonuniform transmission line.
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The matricant is a square matrix of dimension 2n× 2n

M l
l0
=

(
φ1(l) φ2(l)
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)
(13)

containing two linear independent solution vectors for φ and

I .

So far, the parameters are unknown. They can be deter-

mined through a perturbation approach, also shown in Nitsch

and Tkachenko (2010), based on an already known solution

for the matricant from classcial transmission line theory
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giving an analytic solution for the parameters
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After evaluating the parameters the differential Eq. (10) can

be solved with the help of the product integral, Gantmacher

(1960)

M l
l0
= lim
1łk→0

∏
k

eP1lk . (16)

Various numerical methods for the solution of this integral

have been investigated in Steinmetz (2006), following these

investigations a Runge–Kutta method of 4th order gives very

accurate results both in computation time and accuracy of the

solution.

3 Network description of a nonuniform transmission

line

One essential part of a network description of transmission

lines is the concept of the input impedance. When it is pos-

sible to collapse parts of a wire into an input impedance and

use this impedance as termination for the rest of the wire,

then the prerequisites for more complex networks are met.

An experiment was conducted in order to proof simulation

data with measurements. A thin wire with radius 0.35 mm

was fixed as in Fig. 3 above a conducting ground plane.

The nonuniform part in the center of the wire is flanked

by uniform parts to ensure the propagation of a TEM-mode

along these parts of the line. The actual structure of the wire

is shown in Fig. 4.

For the measurements a network analyzer was used, con-

nected to the line from below the ground plane. As can be

seen from Fig. 5 the results of the measurements for the in-

put impedance and the calculation match up to 200 MHz. The

following deviation in the measurements is due to sideeffects

of the experiment, e.g. the coupling to surrounding apertures,

which is not considered in the calculations. But especially

the dielectric material seems to have a considerable effect

on the final results. Nevertheless, the results of a method of

moments simulation and a TLST method show very good

agreement. With these correct results for the complete line,

new calculations for the input impedance can be compared to

now proofed results.

At first the line was cut into two parts in the last half of

the line and thus partitioned into a front and back part, which

were calculated separately, Fig. 6. This means, that the mu-

tual influences between the two parts were neglected, which

is an essential property of a network characteristic.

Thereafter the input impedance is calculated from

Eq. (17), taking into account the terminal impedance ZL and

the matricant of the last part of the line ML
3,L2

i(L)

(
ZL
1

)
=ML

3,L2

(
φ(L2)

i(L2)

)
. (17)

The separation of the line took place in the uniform part of

the line, where a TEM-mode propagates, giving an explicit
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(a) Structure

(b) Connection

Figure 4. Photographs of the real wire.

voltage and therefore the ratio between
φ(L2)
i(L2)

is valid giving

Zi,2 =
φ(L2)

i(L2)
=
M3,12−ZLM3,22

ZLM3,21−M3,11

. (18)

When cutting the line into two parts and calculating both

lines separately one makes an error, when using a full wave

method to compute potential and current. Since a TEM-mode

is dominant on these parts of the line the parameters of the

separated lines should reflect this effect. But when using the

full wave method the lines end at the cutted parts and there-

fore the parameters also change at the end of the line. This

can be avoided in the calculation of Eq. (15) by taking the

lines longer than they actually are. Now, the lines seem to

overlap the junction and the parameters become constant at

the position where the real line ends. In this way the param-

eters are matched to the TEM-mode. The results show an

excellent agreement which can be seen from Fig. 7.

Table 1. Layout of the network structure.

Part Description

1 front part 0–0.318 m

2 junction classical transmission lines

of length 0.1 m

3 nonuniform part 0.518–2.314 m

4 branch 0.324 m

4 Branched network

In the previous section it was shown that a nonuniform line

can be calculated piecewise, when the separation of the wire

took place in the uniform parts. Through this method it is

shown that a nonuniform line with uniform parts can be

treated as a simple network. A more complex network would

include junctions too. In extending the line from the previ-

ous section about an additional wire rectangular to the line,

Fig. 8, a branch point is inserted and a more complex network

created.

The whole structure is now divided into four parts, Table 1.

At first, each structure except the junction itself is calculated

with the TLST. After that the resulting matricants are pre-

pared for a classical electrical network solver. For that the

matricants are transformed into admittance form. It is neces-

sary to pay attention to the specific definition for the admit-

tance transformation for each network solver. In the present

case the following definition is used, Fig. 9,

i(L)=−i2, i(0)= i1 und v(L)= v2, v(0)= v1, (19)

and the matricants are transformed with

Y =

(
−M−1

12 M11 M−1
12

M22M
−1
12 M11−M21 −M22M

−1
12

)
. (20)

Now each part, except for the junction, is in admittance

form, which gives a reduced scheme as shown in Fig. 10.

This scheme is then used for the network solver in form of

Listing 1. A voltage source of 1 V with a resistance of 50�

is connected through the knots 0, 1 and 2. The current in this

branch is measured with a voltage source of 0 V. The junc-

tion is modeled with the nodes 4,5,6,8 using three classi-

cal transmission lines with the network solver’s own func-

tions. Every line is terminated with 50� which reflects the

connection of the networkanalyzer used for measurements.

The calculated, simulated and measured results are shown in

Fig. 11. The calculation and the simulation with a method

of moments show good agreement. Again the measurements

agree up to 400 MHz and diverge for higher frequencies. The

effects of the insulation are not considered in both the calcu-

lation and the simulation. Nonetheless, the plots show, that

networks with branches can be calculated with the TLST. It

is required that the branches occur in the uniform parts of a

line, where a TEM-Mode can dominate and classical trans-

mission line theory is applicable.
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Figure 5. Magnitude and phase of the input impedance of the whole line.

x/m

y/m

x/m

y/m

x/m

y/m

M1

M2

M3

L

L2L1

1,664

0,00255

0,2352

Zi,2(f)

1,664

0,00255

0,2352

Zi,1(f)

0,7

0,00255

Figure 6. Calculation of input impedances

5 Conclusions

It could be shown in this article that nonuniform transmis-

sion lines can be divided into separate parts and calculated

independently from each other. This gives the possibility for

a network abstraction of nonuniform lines which can be ex-

tended to complex networks. The requirement for this ap-

proach of separating the transmission line is, that the line

has uniform parts on which a TEM-mode can propagate. It

is along these parts of the line that the wire can be separated

* Branched Network

v1 1 0 1

R1 1 2 50

v2 2 3 0

x1 pex l_ymat 3 4 M a t r i c a n t s _ 1 s t _ s e g . y

Tl1 4 5 w i r e _ o v e r _ g r o u n d 0 . 1 0 . 2 5 e−3 2 . 4 e−3

Tl2 5 6 w i r e _ o v e r _ g r o u n d 0 . 1 0 . 2 5 e−3 2 . 4 e−3

x2 pex l_ymat 6 7 M a t r i c a n t s _ 2 n d _ s e g . y

Tl3 5 8 w i r e _ o v e r _ g r o u n d 0 . 1 0 . 2 5 e−3 2 . 4 e−3

x3 pex l_ymat 8 9 M a t r i c a n t s _ 3 r d _ s e g . y

R2 7 0 50

R3 9 0 50

. ac l i n 280 1 e6 1 . 5 e9

. p r i n t w i s _ n e t w o r k _ j u n c t i o n . r e s 2 @v2

Listing 1. Script for network solver.

only. Because of the TEM-mode distinct voltages exist which

allow the application of classical network theory on these

parts. Apart from separating one transmission line only, there

was also a branched transmission line investigated. The com-

puted results for the single parts have been used in a network

solver as admittance matrices. The overall result of the input

impedance has been compared to results of a simulation with

a method of moments as well as with measurements and has

shown a good agreement. These results confirm the usability

of the Transmission Line Super Theory for networks. Further

studies are necessary to apply the theory to more complex

networks with multiple conductors and to reduce the compu-

tational effort.
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Figure 8. Network with junction
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Figure 9. Current and voltages on twoports.
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Figure 10. Layout of the network with admittance matrices.
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