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Abstract. In this paper we address a fast approach for an
accurate eigenfrequency extraction, taken into consideration
the evaluated electric field computations in time domain of a
superconducting resonant structure. Upon excitation of the
cavity, the electric field intensity is recorded at different
detection probes inside the cavity. Thereafter, we perform
Fourier analysis of the recorded signals and by means of fit-
ting techniques with the theoretical cavity response model (in
support of the applied excitation) we extract the requested
eigenfrequencies by finding the optimal model parameters
in least square sense. The major challenges posed by our
work are: first, the ability of the approach to tackle the large
scale eigenvalue problem and second, the capability to ex-
tract many, i.e. order of thousands, eigenfrequencies for the
considered cavity. At this point, we demonstrate that the pro-
posed approach is able to extract many eigenfrequencies of
a closed resonator in a relatively short time. In addition to
the need to ensure a high precision of the calculated eigen-
frequencies, we compare them side by side with the refer-
ence data available from CEM3D eigenmode solver. Further-
more, the simulations have shown high accuracy of this tech-
nique and good agreement with the reference data. Finally,
all of the results indicate that the suggested technique can be
used for precise extraction of many eigenfrequencies based
on time domain field computations.

1 Introduction

The field of quantum chaos encompasses the study of the
manifestations of classical chaos in the properties of the
corresponding quantum or more generally, wave-dynamical
system (nuclei, atoms, quantum dots, and electromagnetic
or acoustic resonators). Prototypes are billiards of arbitrary
shape. In its interior a point-like particle moves freely and

is reflected specularly at the boundaries. Depending on the
shape its properties could exhibit chaotic dynamics.

Within this work, we investigate quantum billiards with
its statistical eigenvalue properties, which reveal the periodic
orbits in the quantum spectra and give the quantum chaotic
scattering (Dembowski et al., 2005). Specifically, we sim-
ulate microwave resonator with chaotic characteristics, see
Fig. 1, and we compute the eigenfrequencies that are needed
for its level spacing analysis (Dembowski et al., 2002). Ac-
cordingly, the eigenfrequency level spacing analysis for de-
termining the statistical properties requires many (in order of
thousands) eigenfrequencies to be calculated and the accu-
rate determination of the eigenfrequencies has a crucial sig-
nificance. Moreover, considering that the problem is to com-
pute a large number of eigenfrequencies, they can be often
located in different ranges, i.e. left-most, right-most or inte-
rior portions of the spectrum could be sought.

In many scientific and engineering applications, as well
as, in computational science, this results in solving one of
the fundamental problems, the large scale eigenvalue prob-
lem. We list below just a few of the applications areas
(Saad, 2011) where eigenvalue calculations arise: acceler-
ation of charged particles, structural dynamics, electrical
networks, Markov chain techniques, combustion processes,
chemical reactions, macro-economics, control theory, etc.
The above-mentioned realistic applications frequently chal-
lenge the limit of both computer hardware and numerical al-
gorithms, as the involved matrices are of large scale.

The frequency domain methods (Jacobi-Davidson,
Arnoldi, Lanczos, Krylov-Schur etc.) for eigenvalue cal-
culation for some cavity structures might result in an
extremely time consuming simulation, along with slow
convergence and huge storage space. Particularly, structures
with complicated geometry require a large number of grid
points to achieve accurate simulation results. An additional
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challenge from our application is that the dimension of the
desired eigen subspace is large, namely, one might possibly
need thousands of eigen pairs located in a specified range,
also referred to as a “window”, of matrices with dimension
in excess of several millions. Despite the fact that many
algorithms for eigenvalue determination exist, accompanied
by the numerical models that are becoming increasingly
more sophisticated, not as many are specifically adapted
for computing a large number of interior eigen pairs. They
can usually calculate limited number of extreme or interior
eigenfrequencies, and relatively few are designed for effec-
tively reusing a large number of good initial presumptions,
when they are available. Finally, computing a large number
of interior eigenvalues remains one of the most difficult
problems in computational linear algebra today.

In this context, our investigations comprise efficient, ro-
bust and accurate computations of many desired eigenfre-
quencies in a reasonable time, which also constitutes the
main aim of our study. Within this work, we cover an ap-
proach for extraction of resonant frequencies given the out-
put from time domain computations of closed resonators.
The proposed approach uses the advantage that one single
time domain simulation can provide the whole response of an
electromagnetic system in a wide frequency band, whereas
a frequency domain formulation uses one computation for
each individual frequency. In addition, due to the fact that
the time domain computations in the field of electromagnet-
ics are already highly developed and considerably more ef-
ficient, as well as the fact that the transient solver contained
in CST Microwave Studio (CST, 2012) uses a high degree
of parallelization provided with modern graphics processing
units (GPUs) feature the simulation can be dramatically ac-
celerated. Therefore, we can easily and quickly get the time
domain responses for a wide frequency band. In this way, sig-
nificant reduction in computation time can be achieved and
therefore, our high interest leads to time domain computa-
tions for electromagnetic problems.

The paper proceeds as follows. In Sect.2 we briefly
present the proposed approach for high precision eigenfre-
quency extraction given the available electric field computa-
tions. Here, we describe the fundamental modeling of the an-
alyzed structure, followed by a description of the used signal
postprocessing techniques. Section3 investigates the simula-
tion scenarios together with the obtained results. Lastly, con-
clusions are addressed in Sect.4.

2 Time domain approach for eigenfrequency extraction

This section provides a brief overview of a precise time-
domain (TD) approach for eigenfrequency extraction, which
is applicable for different cavity structures. In a two-step pro-
cess the modeling and simulation of a specific cavity struc-
ture is initially done, and afterward a postprocessing of the
acquired time domain simulation results in MATLAB (MAT-

Fig. 1.Left: desymmetrized version of the three-dimensional gener-
alized stadium billiard, consisted of two quarter cylinders with radii
r1 = 200.0 mm andr2 = 141.4 mm. Right: CST setup of the bil-
liard cavity with an exciting antenna and detection probes placed at
various positions.

LAB, 2011) is conducted. A descriptive sketch of the pro-
posed TD approach is given in Algorithm 1. Additionally,
the critical implementation points and details are covered, as
well as, discussed within this section.

2.1 Field simulation in time domain

The proposed approach for eigenfrequency extraction (given
in the following) is utilized within the project for determin-
ing the statistical properties of a cavity with chaotic char-
acteristics. The requirements for chaotic characteristics are
met by using a superconducting resonator with the shape
of a desymmetrized three-dimensional stadium billiard (see
Fig. 1-left). The billiard consists of two quarter cylinders
with radii r1 = 200.0 mm andr2 = 141.4 mm, respectively,
and is made of niobium, which becomes superconducting at
temperatures below 9.2 K.

The cavity of interest is modeled in CST Microwave Stu-
dio (CST MWS) and a small tiny exciting antenna (as used
in a physical model) is put properly in a way that the modes
within a specific frequency range would be excited (see
Fig.1-right). Intentionally, the excitation signal applied at the
antenna input is wide band signal, i.e. a Gaussian-modulated
sinusoidal signal is chosen, which certainly covers the range
of eigenfrequencies being sought. The field simulation with
hexahedron discretization mesh in time domain is carried out
with the transient solver from CST MWS and it detects and
records the electric field intensity at specific field detection
probes placed at various positions inside the cavity (see lines
1–6 in Algorithm 1). Later, the obtained time domain sig-
nals are used for further postprocessing in MATLAB, based
on fitting techniques with a proposed model of the cavity re-
sponse, as follows below.

2.2 Postprocessing of the CST signals

2.2.1 Limitations from finite simulation time

In view of the fact that we are dealing with superconducting
walls, the response of a cavity could stay for a long time as
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Fig. 2. Operating signals during the process of eigenfrequency extraction, listed in the respective sub-figures.(a) Acquired time domain
signal and Gaussian windowed time domain signal.(b) Amplitude spectrum of the Gaussian windowed time domain signal.(c) Isolated
Gaussian pulse within the eigenmode spectrum.(d) Gaussian modulated signal.
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Fig. 2. Operating signals during the process of eigenfrequency extraction, listed in the respective sub-figures. a) Acquired time domain signal
and Gaussian windowed time domain signal. b) Amplitude spectrum of the Gaussian windowed time domain signal. c) Isolated Gaussian
pulse within the eigenmode spectrum. d) Gaussian modulated signal.

Input: Given a cavity with a specified probe P(x,y,z).
/* CST simulation */
Data: run transient simulation with the predefined simulation

time.
Data: export a TD sig for the electric field intensity in

P(x,y,z).

/* Post processing and frequency
extraction in MATLAB */

TD sig = TD sig∗gausswin(size(TD sig));
fft data = fft(TD sig);
amp spec = abs(fft data);
forall the Gaussian pulses in amp spec do

gauss pulse = locate gauss pulse();
/* ind start=starting index

ind end=ending index */
GoF1 = cftool(gauss pulse,gauss model());
/* GoF = Goodness of Fitting */
if GoF1� 0 then

gausswin fft data(ind start : ind end) =
fft data∗gausswin(ind end− ind start);
forall the ind /∈ gauss pulse do

gausswin fft data(ind) = 0;
end
gauss mod sig = real(ifft(gausswin fft data));
GoF2 =
cftool(gauss mod sig,gauss mod model());
if GoF2' 100 then

extract the eigenfrequency;
end

end
end

Algorithm 1: A sketch of the time domain approach for
extracting eigenfrequencies.

the power losses in the walls are negligible. Theoretically,
the response of an ideal-conducting cavity is Dirac impulse
sequence in frequency domain, i.e. a summation of sinu-
soidal signals with the associated eigenfrequencies in time
domain. Nevertheless, due to the limited simulated time160

interval the ideal Dirac impulses of the true spectrum are
widened. Moreover, due to the finite conductivity and the in-
serted antenna, the amplitude spectrum of the signal does not
contain Dirac delta pulses, but it has pulses of finite width.

An important issue coming from the limitation in time is165

the discontinuities at the edges of the measured time (Mandal
and Asif, 2010). Given that sharp discontinuities have broad
frequency spectra, these will lead to a higher side lobes level
and each spectral line of the signal’s frequency spectrum will
be spread out in the same way. In other words, the spreading170

means that signal energy, which should be concentrated only
at one eigenfrequency, leaks instead into other frequencies,
the so called ’spectral leakage’. Consequently, the whole
spectrum is distorted and some weak impulses, i.e., eigen-
frequencies, can be masked by the resulting convolution with175

neighboring strong pulses. This leads to the idea of multiply-
ing the original signal within the measurement time by Gaus-
sian function (see Fig. 2a) that smoothly reduces the signal
to zero at the end points of the measurement time: therefore
avoiding discontinuities overall (see line 9 in Algorithm 1).180

As a result, in case of an ideal cavity, whose spectrum theo-
retically is constituted of Dirac impulses located at the eigen-
frequencies, we would have Gaussian pulses instead (see Fig.
2b).

Furthermore, manifestation of a spectral distortion occurs185

as result of a reduced spectral resolution. Namely, this is
an important issue, and the minimum separation needed be-

the power losses in the walls are negligible. Theoretically, the
response of an ideal-conducting cavity is Dirac impulse se-
quence in frequency domain, i.e. a summation of sinusoidal
signals with the associated eigenfrequencies in time domain.
Nevertheless, due to the limited simulated time interval the
ideal Dirac impulses of the true spectrum are widened. More-
over, due to the finite conductivity and the inserted antenna,
the amplitude spectrum of the signal does not contain Dirac
delta pulses, but it has pulses of finite width.

An important issue coming from the limitation in time is
the discontinuities at the edges of the measured time (Mandal
and Asif, 2010). Given that sharp discontinuities have broad
frequency spectra, these will lead to a higher side lobes level
and each spectral line of the signal’s frequency spectrum will
be spread out in the same way. In other words, the spreading
means that signal energy, which should be concentrated only
at one eigenfrequency, leaks instead into other frequencies,
the so called “spectral leakage”. Consequently, the whole
spectrum is distorted and some weak impulses, i.e., eigenfre-
quencies, can be masked by the resulting convolution with
neighboring strong pulses. This leads to the idea of multi-
plying the original signal within the measurement time by
Gaussian function (see Fig.2a) that smoothly reduces the
signal to zero at the end points of the measurement time:
therefore avoiding discontinuities overall (see line 9 in Algo-
rithm 1). As a result, in case of an ideal cavity, whose spec-
trum theoretically is constituted of Dirac impulses located at
the eigenfrequencies, we would have Gaussian pulses instead
(see Fig.2b).

Furthermore, manifestation of a spectral distortion occurs
as result of a reduced spectral resolution. Namely, this is
an important issue, and the minimum separation needed be-
tween two frequency components must be determined, so
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that they can be resolved. In our approach, we choose the
frequency resolution good enough to recover the sought fre-
quency data. As a result, a large number of simulation time
samples might be needed for a reliable characterization of
the resonance frequency of the structure, given that better
frequency resolution unescapably requires a longer simula-
tion time. In spite of this, the modern GPUs feature a large
number of processing cores and the simulation is speeded up
significantly in comparison with a simulation running on sin-
gle CPU.

2.2.2 Fast Fourier transformation

As soon as the limitations that come from finite simulation
time or reduced frequency resolution are overcame, the step
from the recorded time domain response to the frequency do-
main response is computed using the fast Fourier transforma-
tion (see lines 10–11 in Algorithm 1, see Fig.2b).

The very classical approach in finding eigenfrequencies is
to look for local maxima of the eigenmode spectrum. How-
ever, this way is not efficient when the interest is in pre-
cise determination of the resonant frequencies and has some
drawbacks. Firstly, the spectrum is discrete with a certain res-
olution and the peak value may not be entirely located on a
sample point. The eigenfrequency could be a value that is
somewhere in the range between two samples given with
the frequency resolution for certain discrete frequency val-
ues (“bins”), implying that the local maximum is not always
the frequency that is sought. Secondly, a more serious focus
was placed that the neighboring modes contribute a certain
amount to the total response at the resonance of the mode
being analyzed and affect slightly the resonant frequency. To
deal with these problems, refined modal extraction methods
based on signal processing techniques have been developed
(see lines 12–31 in Algorithm 1).

2.2.3 Technique for locating a Gaussian pulse

For further analysis, local Gaussian pulses (see Fig.2c)
within the spectrum should be located properly (see line 13
in Algorithm 1). The location process is divided into several
steps. Primarily, a local Gaussian pulse is found as a set of
samples with a local maximum. Thereafter, supplementary
check is conducted if some other samples might be added to
the right-most/left-most side of the current Gaussian pulse.
Namely, if the average amplitude of the succeeding right/left
outer triple of samples is less than the average amplitude of
the right-most/left-most triple of samples, the outer triple of
samples is added appropriately to the right/left part of the
Gaussian pulse. After that, the “empirical rule” for the cur-
rent located Gaussian pulse is applied. For this purpose, the
standard deviation for the pulse is estimated and four stan-
dard deviations are accounted for the resulting pulse. At the
end, the distance from the both ends of the Gaussian pulse to
its maximum is equally adjusted.

2.2.4 Fitting models

By invoking the acquired knowledge of the eigenmode spec-
trum of the cavity, the fitting model should be nonlinear in
the parameters, i.e. we should use Gaussian nonlinear model
to obtain the parameters. In this direction, the parametric fit-
ting is involved as essential technique for precise determina-
tion of the eigenfrequencies and reducing the amount of data
required for a given resolution. Relying on the above discus-
sion, a custom Gaussian model is modeled within the MAT-
LAB curve fitting tool (see line 16 in Algorithm 1), which
suits to the specific curve fitting needs, as shown below:

yi = aiε

−(f −fi )
2

2σ2
i , (1)

wherei goes from unity to the number of the located local
Gaussian pulses in the amplitude spectrum for the analyzed
structure. With this model all of the local Gaussian pulses are
fitted and in eachi-th fitting the values for the found param-
etersai , fi , andσi are saved. The parametersai andfi are
used as initial reasonable starting values of the parameters
in the further fit, whereas the parameterσi is included to in-
crease the numerical robustness. The values of the parameter
fi are good candidates for eigenfrequencies, since they give
the position of the maximum value of each Gaussian pulse.

However, following this way we are restricted to a limited
number of samples, same as the number of samples which
constitute the local Gaussian pulse. The limitation in the sam-
ples causes that the coefficient, which represents the good-
ness of fitting, is very low. That means that the accuracy
of the eventual eigenfrequency cannot be high. Additionally,
with this approach only the amplitude information of the sig-
nal is used, which is not sufficient for precise extraction.

These disadvantages lead to extending our approach, in a
sense where we can get also the phase information of the
signal in a form that is suitable for implementation. Namely,
after fitting a local Gaussian pulse in frequency domain the
values of the parameters and the coefficients for the good-
ness of the fit are obtained. If the goodness of the fit for
some Gaussian pulse is positive then we window this Gaus-
sian pulse with Gaussian windowing function and we go back
in time domain using Inverse Fast Fourier Transform (IFFT)
(see lines 18–31 in Algorithm 1). Otherwise, we do not take
into consideration this pulse, which is most probably noise.
From signal processing is known that shifting in frequency
domain means modulation in time domain. So, the Gaussian-

modulated sinusoidal signalyi = ai sin(2πfi t − φi)ε

−(t−t0)2

2σ2
i

is expected in time domain. The frequency of the modulation
fi is exactly the frequency that is sought. Consequently, we
fit the resulting signal in time domain with a custom Gaussian
modulated model of the cavity response and again by finding
the optimal model parameters in the least squares sense we
determine the “true” eigenfrequency.
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The main advantage comparing the proposed approach
with the classical approach for finding the peaks, is that
within this approach the phase information of the signal is
used and parametric fitting with all of the data available in
the time domain representation is applied. Although, the fit-
ting based only on the amplitude information of the signal
results in poor fit, now using the phase information of the
signal, very good value for the goodness of the fit can be
reached. In this way, as shown in Sect.3, we gain a very high
accuracy in the eigenfrequency extraction from time domain
computations.

2.2.5 Nonlinear parametric fitting

The fitting process uses the method of nonlinear least
squares, presented inNash and Sofer(1996) and Lewis et
al. (2006), which minimizes the summed square of residuals,
identified as error associated with the data, given by

S =

n∑
i=1

r2
i =

n∑
i=1

(yi − ŷi)
2, (2)

where the residualri for the i-th data point is defined as the
difference between the observed response valueyi and the
fitted response valuêyi while n is the number of data points
included in the fit. In case of nonlinear models the parame-
ters cannot be estimated using simple matrix techniques and
these models are particularly sensitive to the starting points.
This leads to difficult fit and the starting points are adjusted.
Therefore, at the beginning initial reasonable starting values
for each parameter are provided. Then, the iterative approach
follows some steps until the fit reaches the specified conver-
gence criteria. At the end, the direction and magnitude of
the adjustment of the parameters depends on the Levenberg-
Marquardt fitting algorithm proposed byLevenberg(1944),
Marquardt(1963), andMoré (1978).

3 Simulation results

The accuracy of the TD method for eigenfrequency ex-
traction is tested for both analytically and non-analytically
resolvable problems. Additionally, the proper functionality
of the method has been checked during its implementation
process. In the numerical tests, several resonators are con-
sidered. Namely, due to verification purposes, rectangular,
cylindrical and spherical resonant structures are analyzed,
whose exact solution can be analytically evaluated. Firstly,
the eigenvalues of the above mentioned resonators are com-
puted from their analytical expressions and following this
way, a logarithmic relative error is calculated as

relative error= log10

∣∣fanalytical− fnumerical
∣∣

fanalytical
, (3)

by considering the first computed mode eigenfrequency, un-
less otherwise stated.

Besides the analytically resolvable resonators, the rela-
tive error is also measured for the chaotic billiard resonator,
which has a clustered eigenvalue distribution (Dembowski
et al., 2002). A clustered distribution containing too close
eigenfrequencies might cause difficulties in the eigenfre-
quency extraction. As reference data, eigenvalues calculated
with CEM3D eigenmode solver for different degrees of free-
dom (DOF) are computed. Here, CEM3D eigenmode solver
is a parallel program, developed by (Ackermann and Wei-
land, 2012) for the accurate calculations of eigenfrequencies
for a given structure. It implements a FEM formulation by
means of higher order curvilinear elements.

In all simulations, we first modeled and meshed the re-
lated geometries in CST MWS with hexahedrons and saved
the electric field intensity during the transient simulation. Af-
terward, the eigenvalue extraction is calculated in MATLAB.

In the simulation studies, we experienced that for the time
domain field computations, a single personal computer is
suited for problems with a moderate number of degrees of
freedom (say, up to 106 DOF). To be precise, a computer with
a single core Pentium 3 GHz processor and 6 GB main mem-
ory was used. The same PC configuration was also utilized
for the TD method for eigenvalue extraction. On the other
hand, a more powerful computer was necessarily used to en-
able the handling of meshes with hundreds of thousands up
to several millions DOF. The larger-scale simulations were
performed on a GPU computer, e.g. 2.00 GHz (quadcore)
having 32 GB RAM memory and 4 nVIDIA Quadro GPUs.

3.1 Rectangular, cylindrical, and spherical cavity

As a first experiment, we consider a rectangular cavity with
perfectly conducting walls, containing a perfect vacuum. The
degeneracy is broken by making the side lengths different,
i.e. rectangular resonator with dimensionsa = 20 cm, b =

10e cm, andc = 10π cm. The resonance frequency of the
rectangular microwave cavity for the TE011 mode (the mode
with the lowest cutoff frequency for a rectangular waveg-
uide wherec > b > a) is found by imposing boundary condi-
tions on the electromagnetic field expressions in which all of
the field components vary sinusoidally at a single frequency
(Pozar, 1998).

Along this line, the fundamental mode in a cylindrical cav-
ity (Reitz and Milford, 1960) with radius R = 20 cm and
lengthL = 10π cm is calculated, too. For the analyzed cylin-
drical cavity, since we do not have largeL fulfilling L >

2.03R, the TM010 mode constitutes the fundamental oscil-
lation. The mode of interest has azimuthal symmetry and the
electric field has no longitudinal variation (δE/δz = 0).

Lastly, the first TM101 mode of a spherical resonator with
a radiusR = 1m is computed from analytical expressions
given in (Gallagher and Gallagher, 1985) by employing a
root finding algorithm of transcendental equations which is
simply explained in (Pozar, 1998).

www.adv-radio-sci.net/11/23/2013/ Adv. Radio Sci., 11, 23–29, 2013
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Fig. 3. Relative deviation of the numerically obtained valuesf̂ for
the lowest eigenfrequency to the analytical resultf as a function
of the degrees of freedom (DOF) for a rectangular, cylindrical, and
spherical resonator.

Specifically, for the time domain field simulations several
different discretization meshes have been used and the con-
vergence study based on the calculation of a relative error,
given with Eq. (3), is shown in Fig.3. As the number of dis-
cretization mesh cells increases, the difference between the
analytical and the numerical solutions becomes smaller and
absolute error in order of 10−4 is present. So, fast conver-
gence is observable and it should be emphasized. As sug-
gested by the convergence study, good accordance of the nu-
merical with the analytical results is evident.

3.2 Billiard cavity

Using the previosly described algorithm, about 900 eigenfre-
quencies up to 7 GHz have been calculated for the billiard
cavity structure. Unfortunately, for this shape of resonator
an analytical solution for the electromagnetic problem is not
available and in order to validate the obtained results, ref-
erence data from CEM3D eigenmode solver are used (see
Fig. 4). The structures are modeled and meshed with curvi-
linear tetrahedrons and the corresponding meshes are im-
ported to CEM3D eigenvalue solver in order to compute the
requested eigenfrequencies for the analyzed structure.

In Fig. 4, a part of the results that are found with the
TD approach compared to the reference data, is presented.
On the abscissa are given the frequencies in an a priori se-
lected frequency band, i.e. from 1.8 up to 2.4 GHz. The
ordinate shows the eigenfrequencies obtained with the time
domain approach using four different discretization meshes,
and the reference data calculated using a field simulation in
frequency domain with two different tetrahedral meshes. The
total time for the transient simulations is 3.5× 10−5 s, which
results in frequency resolution of 30 kHz.

The results in Fig.4 indicate that when fine mesh is used
the number of eigenfrequencies found with the proposed TD
approach is exactly the same as the reference data, i.e. no ad-
ditional frequency is added or no missed. In addition, such
check was conducted for all of the 900 calculated eigen-
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Fig. 4. Convergence study showing a comparison between the
eigenfrequencies calculated with the proposed TD approach (red
color) and the reference eigenfrequencies obtained with CEM3D
eigenmode solver based on higher order curvilinear elements (green
color). For the TD approach four different hexahedron discretiza-
tion meshes are used. At the same time, the reference data are ob-
tained using two different tetrahedral discretization meshes.
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Fig. 5. Convergence study showing a comparison between the
eigenfrequencies calculated with the proposed TD approach (red
color) and the reference eigenfrequencies obtained with CEM3D
eigenmode solver based on higher order curvilinear elements (green
and blue color). For the TD approach four different hexahedron dis-
cretization meshes are used. At the same time, the reference data
are obtained using three different tetrahedral discretization meshes.

frequencies. Concerning the accuracy of the obtained data,
slightly shifting of the frequencies can be observed in case
of coarse meshes. As the number of mesh cells increases, a
good agreement with the reference data is clearly observed.
For this purpose, a part of Fig.4 is enlarged and shown in
Fig. 5. According to Fig.5, in case of fine meshes a good
agreement of TD results with the reference data can be ob-
tained. Furthermore, in Fig.5 an additional row is added rep-
resenting extremely accurate reference data for the eigenval-
ues in the range [2.30, 2.37] GHz. These results are obtained
with almost 6 million of tetrahedral mesh cells and are used
to calculate the logarithmic relative error for the modes: 2.36
and 2.37 GHz (see Fig.6). From this figure a second order
convergence error is observed. Consequently, the proposed
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Fig. 6. Relative deviation of the numerically obtained valuesf̂ to
the reference resultsf as a function of the degrees of freedom
(DOF) for a billiard resonator. Two eigenfrequencies are consid-
ered: 2.36 GHz and 2.37 GHz mode eigenfrequency.

approach can be used for precise extraction of eigenfrequen-
cies from time domain computations.

4 Conclusions

In conclusion, we have presented an approach for eigenfre-
quency extraction when the time domain response for a su-
perconducting closed resonator is available and when plenty
of eigenfrequencies are required. The approach is relatively
fast and very simple compared to others presented in litera-
ture. In addition, we have inspected the robustness and con-
vergence of the proposed technique in time domain with the
reference data determined by the CEM3D eigenmode solver
with higher order curvilinear elements. Hereby, the conclu-
sion shows that the proposed approach results in solutions
which agree well with the reference data, gaining high accu-
racy and efficiency in eigenvalue extraction. Finally, all of the
results indicate that the proposed TD technique can be used
in different areas of applications, where a precise extraction
of plenty of eigenfrequencies takes a crucial role.
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