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Abstract. The Method of Lines (MoL) is a semi-analytical
numerical algorithm that has been used in the past to solve
Maxwell’s equations for waveguide problems. It is mainly
used in the frequency domain. In this paper it is shown how
the MoL can be used to solve initial value problems in the
time domain. The required expressions are derived for one-
dimensional structures, where the materials may be disper-
sive. The algorithm is verified with numerical results for ho-
mogeneous structures, and for the concatenation of standard
dielectric and left handed materials.

1 Introduction

For developing waveguide structures numerical methods are
widely used, because only in exceptional cases Maxwell’s
equations can be solved analytically. For studying e.g. the
propagation of short pulses, time domain methods are best
suited.

Recently there has been a huge interest in so called left
handed materials (LHM see e.g.Eleftheriades and Balmain,
2005Caloz and Itoh, 2006; other names found in the litera-
ture are e.g. double negative index material or negative index
material).

In such materials the phase velocity is negative and the
wave vector and the Poynting vector are anti-parallel. Due to
the negative phase velocity it is not obvious that information
is transmitted in forward direction. Therefore, time domain
computations are performed to check if causality is violated.

As an example for such time domain methods we would
like to mention the well known FDTD (finite difference time
domain method see e.g.Taflove, 1995Ziolkowski and Hey-
man, 2001, Ziolkowski, 2003). In this method all derivatives
in time and space are approximated with finite differences.

An established technique in frequency domain is the
Method of Lines (MoL) where besides the discretization also
analytic expressions are used. Details can be found e.g. in the

book articlesPregla and Pascher, 1989; Pregla, 1995or the
bookPregla, 2008.

Though the MoL is used in electromagnetics mainly as fre-
quency domain method also time-domain computations have
been made with this algorithm. In (Schiesser, 1991) the time
dependency is treated with finite differences.

Another approach was followed by the group of Itoh (Nam
et al., 1989a,b, 1988a,b, 1989c). A time dependency accord-
ing to sinωt and cosωt was used and mainly the cut-off fre-
quencies of waveguides were determined.

Recently, the MoL in frequency domain was combined
with the discrete Fourier transformation to obtain time-
dependent solutions (seeGerdes, 2007).

In the time domain MoL (TD-MoL) that is described in
this paper, a different approach is followed. We will solve
Maxwell’s equation as initial value problem (as e.g. in the
FDTD).

In the next section, we will derive suitable expressions.
The basic principles are described in one dimension for dis-
persion free materials. Following, we show how material dis-
persion is taken into account. After that we present numerical
results. To test the algorithm, we begin with a homogeneous
structure. Once the correct implementation of the algorithm
has been established, the concatenation of standard dielectric
material with left materials is studied as further example. It
should be mentioned that LHMs must be strongly dispersive
(see e.g.Smith and Kroll, 2000). The paper ends with a short
summary.

2 Theory

2.1 Dispersion free materials

In this section we will show the principles of the Method of
Lines in the time domain. To develop suitable expressions,
we start with Maxwell’s equations:

∇ ×E = −
∂B

∂t
∇ ×H =

∂D

∂t
(1)
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For materials without dispersion (at least in the considered
frequency domain) the relative permittivity resp. permeabil-
ity are introduced, leading to the well known expressions:

D = ε0εrE B = µ0µrH (2)

Next, the magnetic field is normalized according to

H̃ = Z0H

with the free space impedanceZ0 and the speed of light in
vacuumc0 determined as√

µ0

ε0
= Z0

1
√

µ0ε0
= c0

Then, Maxwell’s Equations (1) can be writtten as

∇ ×E = −
µr

c0

∂H̃

∂t
∇ × H̃ =

εr

c0

∂E

∂t
(3)

For 3-D-considerations, we would use Eqs. (3) as starting
point.

In the following, however, we restrict ourselves to one-
dimensional problems. This has two reasons: (a) The basic
principles of the algorithm are identical for 1-D–3-D prob-
lems and (b) obviously the numerical effort is lower for 1-D
so that we start with this most simple case.

For one–dimensional problems with∂/∂x = ∂/∂y = 0 we
take the field componentsEx andHy and introduce the fol-
lowing abbreviations:

E = Ex H = H̃y

Then, Maxwell’s equations (3) become:

∂H

∂t
= −

c0

µr

∂E

∂z

∂E

∂t
= −

c0

εr

∂H

∂z
(4)

As usual in the MoL, we discretize some of the derivatives
with finite differences and use analytic expressions for the
remaining ones. For the time domain algorithm, we discretize
in z-direction and treat the time dependency analytically. The
situation is shown in Fig.1, where we see lines int-direction,
which may be seen as justification for the name ”MoL” here.

As can be seen from Eq. (4) the electric and magnetic
fields are coupled by first derivatives with respect toz. There-
fore, as usual in finite difference methods, they are deter-
mined on different positions, i.e. shifted by half a discretiza-
tion distance, as shown in Fig.1. Since the computational
window in z-direction must be finite, perfectly matched lay-
ers, as described e.g. in (Werner and Mittra, 1997) were intro-
duced to avoid (resp. minimize) reflections at the boundaries.

For the further analysis the discretized fields are combined
into a vector[F ] and the discretized derivatives into the op-
erator matrixQ. Then the expressions in Eq. (4)become:

∂

∂t
[F ] = −Q[F ] with [F ] =

[
[E]

[H ]

]
(5)

∆ z

z

t

E E E E E E E
2 3 40 5 61

H H H H H H
2 3 4 5 61

Fig. 1.Discretization inz-direction with finite differences

Note: the mathematical vectors containing the fields at differ-
ent positionsz were written in brackets to distinguish them
from the physical vectors, which contain the spatial compo-
nents of the fields and which were written in boldface.

With the exception that an analytic derivative with respect
to t occurs, Equation (5) looks very similar to the discretized
generalized transmission line equations (see e.g.Pregla, 2008
pp. 19–20) which are often used as starting point in the MoL
in frequency domain.

The following steps, however, are different from the ones
in frequency domain described e.g. in (Pregla, 2008). Partic-
ularly, we want to use Eq. (5) to solve an initial value prob-
lem with analytic expressions forE0(t) as input parameters.
To obtain suitable expressions, we split the matrixQ into two
parts as shown below:

Q   = Q1

Q0

[F ] =

[
E0

[F1]

]

i.e. the first column (with which we multiplyE0) is separated
from the remaining ones and the first row ofQ is omitted.
Then, Eq. (5) is rewritten in the following way:

∂[F1]

∂t
+ Q1[F1] = −Q0E0(t) (6)

Equation (6) describes a coupled, linear, inhomogeneous dif-
ferential equation system (IDE), whereE0 (see Fig.1) can
be considered as source.

As well known from mathematics, the general solution of
linear inhomogeneous differential equations is composed of
the general homogeneous solution and a particular inhomo-
geneous one:

[F1] = [Fh] + [Fi] (7)

To obtain the homogeneous part, we must solve

∂[Fh]

∂t
+ Q1[Fh] = [0] (8)
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As usual in the MoL, this system is diagonalized by transfor-
mation to principal axes:

Q1 = T�T−1 (9)

whereT and� are the eigenvector/eigenvalue matrix ofQ1.
By transforming the fields according to

[Fh] = T[F h] (10)

we obtain

∂[F h]

∂t
+ �[F h] = [0] (11)

with the solution:

[F h(t)] = e−�t
[F h(0)] (12)

Next, we must find a particular solution of the inhomo-
geneous differential equation system. For this purpose, we
transformQ0 and[Fi] according to:

Q0 = T−1Q0 [F i] = T−1
[Fi]

Then, we obtain from Eq. (6):

∂[F i]

∂t
+ �[F i] = −Q0E0(t) (13)

As is known from mathematics, a particular solution can be
constructed by variation of the constants, i.e. with the ansatz:

[F i] = e−�t
[c(t)] (14)

The first factor comes from the solution of the homogeneous
differential equation and the second one has to be deter-
mined. Introducing Eq. (14) into Eq. (13) leads to

∂[c(t)]

∂t
= −e�tQ0E0(t) (15)

hence:

[c(t)] = −

∫
e�tQ0E0(t)dt (16)

It should be mentioned thatQ0 just causes constant factors.
Hence, analytic expressions can be given if the product be-
tweene�t andE0(t) can be integrated in closed form. Since
the first factor (e�t ) only depends on the structure, the choice
for E0(t) decides, if we are able to find such a closed form
for the solution.

Usually,E0(t) is defined in time intervals; e.g.E0 = f1(t)

for 0 < t < τ1, f2(t) for τ1 < t < τ2, etc. For this example,
the fields must be continuous att = τ1,τ2 . . .

Then, the time dependent fields are computed with the fol-
lowing procedure: we begin with determining the eigenvec-
tors/eigenvalues of the structure. It is important to note that

this has to be done only once. After that, a particular solution
of the inhomogeneous differential is constructed for the first
time interval. Since we formulated an initial value problem,
the fields at timet = 0 are known, e.g.,[Fin(t = 0)] = [0].
With these initial values and the particular solution of the
IDEs we are able to determine the homogeneous part for
t = 0:

[F I
h(t = 0)] = [Fin(t = 0)] − [F I

i (t = 0)] (17)

Then, the field distribution at the end of this time interval
(i.e. for t = τ1) is determined analytically with Eqs. (12) and
(14) and we can write for the whole fields:

[F I(t = τ1)] = [F I
i (t = τ1)] + [F I

h(t = τ1)] (18)

(The superscript ”I” corresponds to the first time interval.) At
the beginning of the second time interval, again a solution of
the inhomogeneous problem is constructed and the homoge-
neous part is used to ensure the continuity of the fields for
t = τ1, resulting in:

[F II
h (t = τ1)] = [F I(t = τ1)] − [F II

i (t = τ1)] (19)

This procedure (construction of a solution of the IDE, and
determining the homogeneous part from the continuity-
condition of the fields) is repeated for all intervals. The re-
maining computations to determine the field distribution at
an arbitrary time are also done analytically, with very low nu-
merical effort. For this purpose we have to store the homoge-
nous and inhomogeneous solutions at the beginning of each
time interval, i.e.,[F I

h(0)], [F I
i (0)], [F II

h (τ1)], [F II
i (τ1)] . . ..

and apply Eqs. (12 and 14). The storage itself is not very
memory demanding since the homogeneous solutions are
vectors, whereas the inhomogeneous ones are stored as ma-
trices but with very few columns. For the example given in
this paper (see Sect.3) we have matrices with maximum
seven columns (a sinusoidal wave was turned on/off with a
polynomial of the sixth degree.)

Note: Since the geometric structure does not change with
time, we could have written the Eq. (17–19) also for the
transformed (overlined) fields.

2.2 Dispersive material

Dispersive material is introduced into the algorithm similarly
to what is done in the FDTD (see e.g.Ziolkowski and Hey-
man, 2001; Ziolkowski, 2003). The material dependencies
are written with the polarization and the magnetization:

D = ε0E + P B = µ0(H + M) (20)

In this paper, we use left handed material as example. The
material parameters are described by the Drude model in the
following way (see e.g.Ziolkowski, 2003):

ε(ω) = ε0

(
1−

ω2
pe

ω(ω − j0e)

)
(21)
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µ(ω) = µ0

(
1−

ω2
pm

ω(ω − j0m)

)
(22)

As before, we restrict ourselves in the following to the 1D
case and introduce the following abbreviations:

E = Ex H = Z0Hy P = Z0Px M = Z0My

Then, the material parameters in Eqs. (21–22) relateE and
P resp.H andM in the following way:

−ω2P + jω0eP = ω2
pec0E (23)

−ω2M + jω0eM = ω2
peH (24)

With the help of an inverse Fourier-transform this can be
rewritten to differential equations:

∂2P

∂t2
+ 0e

∂P

∂t
= ω2

pec0E (25)

∂2M

∂t2
+ 0m

∂M

∂t
= ω2

pmH (26)

Since Eqs. (25–26) contain derivatives with respect tot we
could apply them to the TD-MoL scheme. However, only
time derivatives ofP and M occur and we can simplify
(in terms of numerical effort) these expressions by introduc-
ing electric and magnetic currentsZiolkowski and Heyman,
2001; Ziolkowski, 2003:

J =
∂P

∂t
K =

∂M

∂t

Then, Eqs. (25–26) together with Maxwell’s equations re-
sult in the following coupled differential equation systemZi-
olkowski and Heyman, 2001; Ziolkowski, 2003:

∂E

∂t
= −c0

∂H

∂z
− c0J (27)

∂J

∂t
= −0eJ + ω2

pec0E (28)

∂H

∂t
= −c0

∂E

∂z
− K (29)

∂K

∂t
= −0mK + ω2

pmH (30)

As can be seen, first derivatives with respect tot occur on the
left hand side of these equations, whereas only derivatives
with respect toz and the quantities themselves occur on the
right hand side. Therefore, after discretization and combining
the fields and currents in a vector

[F ] =


[E]

[J ]

[t]

[K]



0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

t / TP

0.8

E
  (

t)
0

I III IVII

t t t t1 2 3 4

Fig. 2. Input time signalE0(t)

we formally end up with the same system of coupled, linear,
inhomogeneous differential Eq. (5) that we had in the dis-
persion free case. Obviously,[F ] and the operator MatrixQ
differ here from this dispersion free case. However, for the
further steps in the algorithm we may refer to Sect.2.1 and
do not need to repeat them.

3 Numerical results

3.1 Input field

To validate the algorithm, we examined various structures,
where a sinusoidal wave was excited, which was smoothly
turned on/off. In principle, the input fieldE0 is shown in
Fig. 2.

As can be seen, four intervals occur. Mathematically, the
field in these intervals is given by the following expressions:

E0(t) =



I : A0

N1∑
k=0

ak tk1 sinω0t1

II : A0sinω0t2

III : A0

N2∑
k=0

bk tk3 sinω0t3

IV : 0

(31)

For such input fields the integral in Eq. (16) can be given in
closed form as is shown in the appendix.

In particular, the following parameters taken fromZi-
olkowski and Heyman, 2001; Ziolkowski, 2003 were used
to turn on/off the sinusoidal wave:

E0on(t1)

A0
=

(
10t3

1

(monTp)3
+

−15t4
1

(monTp)4
+

6t5
1

(monTp)5

)
sinω0t1
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PML

z

ɛ, μ=const

Fig. 3.Test structure with perfectly matched layers

E0off(t3)

A0
=

(
1−

10t3
3

(moffTp)3
+

15t4
3

(moffTp)4
+

−
6t5

3

(moffTp)5

)
sinω0t3

Tp stands for the cycle period and is related to the fre-
quency viaω0Tp = 2π . The number of periods to turn on/off
the signal are indicated bymon,off . In our studies we used
mon = moff = 2, and a constant sinusoidal wave forms = 4
periods so that the local time variablest1,...,4 and the global
one (t) are related in the following way:

t1 = t t2 = t − monTp t3 = t − (mon+ ms)Tp

t4 = t − (mon+ ms+ moff)Tp

3.2 Examined structures

As first test, the structure shown in Fig.3 was examined. The
field was injected into the homogeneous section which is ter-
minated with perfectly matched layers (PML). Numerical re-
sults are shown in Fig.4. The electric field is presented at dif-
ferent moments in times. As expected, the field travels from
left to right (i.e. in positivez–direction). Since there is no
dispersion, the shape of the field remains unchanged.

Furthermore, it can be seen that the fields are damped by
the PMLs and that no visible reflections occur, neither at the
interface between the homogeneous structure and the PML
nor at the end of the device. These results suggest that the
algorithm (incl. PMLs) works in principle and has been im-
plemented correctly .

A more complicated device was studied in the follow-
ing. It consists of the concatenation of standard dielectric–
(i.e. “right handed– (RHM)”) and left handed–materials
(LHM). In LHMs the material parametersεr andµr are neg-
ative in the interesting frequency regions. This leads to pe-
culiar characteristics, e.g. the phase velocity is negative and
waves travel “backwards”. Due to physical reasons, LHMs
must be strongly dispersive. In this paper, we will not dis-
cuss all these characteristic but would like to refer the in-
terested reader e.g. to the booksEleftheriades and Balmain,
2005; Caloz and Itoh, 2006and to the Ziolkowski-papersZi-
olkowski and Heyman, 2001; Ziolkowski, 2003.

Since waves travel backwards in LHMs one might won-
der if basic physical principles, like causality, are vio-
lated. Therefore, Ziolkowski used the FDTD and made time
domain calculationsZiolkowski and Heyman, 2001; Zi-

0 1 2 3 4 5 6 7 8 9

−1

0

1

0 1 2 3 4 5 6 7 8 9

−1

0

1

0 1 2 3 4 5 6 7 8 9
−1

0

1

z/ λ

E 
[a
.u
]

E 
[a
.u
]

E 
[a
.u
]

t

PML

Fig. 4. Field determined at different times in the structure shown in
Fig. 3

ɛ, μ =const

PML

zɛ, μ=constɛ, μ=f ( ω )

RHM RHMLHM

Fig. 5.Concatenation of right handed and left handed material

olkowski, 2003. It was found that the front of the wave al-
ways propagates forward, i.e. that the causality principle is
fulfilled. In this paper, we use the LHM structure as example
to test our developed algorithm for dispersive materials.

The structure under study is presented in Fig.5. The left
handed material is sandwiched between right handed ma-
terial with εr = µr = 1. Again the structure is truncated by
PMLs. For the LHM we take permittivity and permeability
from the Drude-Model Eqs. (21–22). Particularly, the fol-
lowing parameters fromZiolkowski and Heyman, 2001; Zi-
olkowski, 2003were taken:

ω2
p = 2ω2

0 0 = 3.75× 10−4ωp

Hence, forω0 (i.e. the frequency of the sine-function) the
relative permittivity and permeability are:

εr(ω0) = µr(ω0) ≈ −1

The numerical results are shown in Fig.6. Let us begin
with a few remarks. Generally, the time progresses from the
top graph to the bottom one. In each of the graphs two curves
are sketched, which show the situation in a short time dis-
tance.

In the top graph the electric field has just reached the first
RHM-LHM interface. So, the wave has travelled to the right
in the standard RHM. This behaviour is also recognized in
the beginning of the LHM.

www.adv-radio-sci.net/11/15/2013/ Adv. Radio Sci., 11, 15–21, 2013



20 S. F. Helfert: TD-MoL

−1

0

1 t  1
t  2

<  t2t 1

z/ λ0 0.5 1 2 31.5 2.5

0 0.5 1 2 31.5 2.5

0 0.5 1 2 31.5 2.5

−1

0

1

−1

0

1

E 
[a
.u
]

E 
[a
.u
]

E 
[a
.u
]

t

PML

Fig. 6. Electric field distribution in the structure shown in Fig.5 ,
snapshots at three different times

In the middle graph the wave front has arrived at the sec-
ond (LHM-RHM) interface. As before, the wave front travels
to the right. However, it can also be observed that at the LHM
input, the phase of the wave is already propagating back-
wards i.e. to the left.

Finally, the bottom graph shows the steady state. Here we
observe a positive phase velocity in the two right handed me-
dia, but a negative phase velocity in the LHM. We can also
see that the PML region damps the fields and does not cause
reflections at that interface. These results agree with the ones
from the FDTD and can be interpreted in two ways:

1. The FDTD findings (Ziolkowski and Heyman, 2001; Zi-
olkowski, 2003) are confirmed. Left handed materials
do not violate the causality principle, because the wave-
front propagates in positive direction.

2. (more important) The TD-MoL is able to treat material
dispersion.

4 Summary and conclusions

In this paper we presented a time domain Method of Lines. It
could be shown that the algorithm works in principle, at least
as long as we restrict ourselves to 1D-problems in space. Dis-
persive materials can be treated. A few potential advantages
(compared to the FDTD) are:

– The solutions in time are given in an analytic form.
Therefore, we can look at field distributions at arbitrary
(particularly late) times immediately.

– In the FDTD fine grid sizes (in space) also require very
short time-steps to keep the algorithm stable. Since ana-
lytic expressions are used in the TD-MoL, we may look
at the fields at arbitrary times without stability problems
and without any loss of accuracy.

However, besides these advantages a few problems must be
named as well. In principle we could apply the developed
method also to higher (2-D–3-D) problems. Unfortunately,
the numerical effort rises significantly when higher dimen-
sions are considered. Therefore, the topic of the current work
deals with reducing this numerical effort to be able to treat
2-D, 3-D problems in the future.

Appendix A

The turning on/off the sinusoidal waves was described by the
functions given in Eq. (31). For computing a particular solu-
tion of the inhomogeneous differential equation system (13)
we must determine[c(t)] with the integral given in Eq. (16).
The integral contains the product of a diagonal matrix (e�t )
with a constant vector (Q0). Therefore, we end up with a
system of decoupled scalar equations, and we must compute
integrals of the form∫

tke�t sinω0t dt

∫
e�t sinω0t dt

For the first integral we obtain∫
tke�t sinω0t dt =

∫
tke�t

(
ejωt

− ejωt

2j

)
dt (A1)

=
1

2j

∫
tk
(
e(�+jω)t

− e(�−jω)t
)
dt

=
tk

2j

(
e(�+jω)t

� + jω
−

e(�−jω)t

� − jω

)
+

−
k

2j

∫
tk−1

(
e(�+jω)t

� + jω
−

e(�−jω)t

� − jω

)
dt

As seen, the integral is solved recursively. The expression in
the last row can be found in mathematical formularies. (Here
we usedBronstein and Semendjajew(1979).)

To compute
∫

e�t sinω0t dt we can introducek = 0 into
Eq. (A1). Alternatively, we find fromBronstein and Semend-
jajew(1979):∫

e�t sinω0t dt =
e�t

�2 + ω2
0

(�cosω0t + ω0sinω0t) (A2)

As can be shown very easily, the expressions in Eq. (A1) can
be transformed into the one in Eq. (A2) in casek = 0.
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