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Abstract. To avoid additional layers for high linearity ca-
pacitances in modern CMOS process families, compensated
depletion mode MOS capacitances can be used. As shown in
previous publications, these MOS capacitances are suitable
for low voltage applications.

But there exist limitations concerning the linearity of these
capacitances. In this work, the impact of the nonlinearity of
the capacitances on different kinds of circuits is investigated.
Several examples will be discussed to show how to choose
the right capacitance topology.

1 Introduction

In state of the art highly integrated CMOS process families
strong design constraints exist concerning the area consump-
tion of a circuit. Often capacitances are the most area in-
tensive components, if you look at mixed-signal circuits, like
the sample and hold, the frequency compensation of opamps,
or more complex circuits like filters or61-converters. So
it’s obvious that it is necessary to search for a method to re-
duce the area for these capacitances. As shown in Tille et al.
(2000) you can use compensated MOS capacitances, because
they have a very thin gate oxide, which leads to high area
efficiency. Another positive aspect is the knowledge about
matching of MOS transistors, because it can easily be trans-
fered to the MOS capacitances. In addition to that no extra
process steps are required in contrast to MIM capacitances.

In previous work we have presented61-modulators using
compensated MOS capacitances. The purpose of this work
is to investigate the basic analog building blocks of mixed-
signal circuits with respect to their sensitivity to the non-
linearity occuring in compensated MOS capacitances. This
gives guidelines to the designer for the decision, which type
of capacitance is appropriate for a given application.
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2 Device characteristics of MOS capacitances

2.1 C-V characteristic

The usable voltage range of MOS capacitances can be di-
vided in three parts: Accumulation, inversion and depletion.
A physical C-V curve of an p-channel MOSFET in an n-
well is given in Fig. 1. It shows, that the first two parts
behave more linear and have a higher absolute capacitance
value than the depletion mode. However, these two voltage
ranges are too high for low voltage applications. Concerning
the operating point voltages the depletion mode capacitances
must be used, but there the value strongly depends on the
voltage. The depletion range can be broadened by applying a
source bulk voltage (see Fig. 2), but the voltage dependency
is still there. In order to reduce this dependency you have to
combine two MOS transistors in an antiparallel or antiserial
arrangement.

2.2 Compensated MOS capacitances

Most of the nonlinearities of depletion mode MOS capaci-
tances can be eliminated by an antiserial or antiparallel con-
nection of two capacitors (Tille et al., 2000). The exact cir-
cuit diagram and the remaining nonlinearity are shown in
Fig. 3. Comparing the two methods, you can see that the
more area efficient parallel compensation has less linearity
than the serial compensation. In both cases you can broaden
the usable voltage range by applying an additional source
bulk voltage. Just 0.5 V are enough for the serial compen-
sation to get a working range of± 1.5 V which is enough for
low voltage applications.

The floating source bulk voltages are hard to generate. As
the source and drain contacts have to be negative referring to
the bulk potential, we can simply connect them to the con-
stant voltageVSS . By doing that we ensure that the drain-
bulk and the source-bulk diodes are always reverse-biased.
With source and drain on a constant potential and the con-
tacts A and B being variable (see Fig. 4), the depletion broad-
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Fig. 1. Measured C-V characteristic of a MOS capacitance and its different voltage ranges.

Fig. 2. Measured C-V characteristics of a MOS capacitance with
depletion broadening caused by several source bulk voltages.

Table 1. Comparison of the area consumption of different types of
capacitances in different technology generations

Process: 0.35µm 0.25µm 0.18µm
Type [f F/µm2] [f F/µm2] [f F/µm2]

Poly-Poly 1.30 - -
Poly-Metal 0.049 0.10 0.10
Metal-Metal 0.041 0.05 0.09
MIM cap. 0.70 0.70
MOS cap. (serial) 0.43 0.49
MOS cap. (parallel) 1.60 1.97

ening is modulated. This does not cause a problem, because
in the voltage rangeVDD − VSS = 1V depletion can be
maintained in all operating points, see Fig. 4. With antis-
erial compensation, the remaining nonlinearity in the volt-
age range of[−0.5V ; 0.5V ] is below 0.5%. For antiparallel
compensation we obtain a nonlinearity of nearly 10%, when
the full voltage range is used. However, this can be reduced
by limiting the voltage amplitude on the capacitance. Within

[−0.3V ; 0.3V ], the nonlinearity is only around 3%.

To complete the introduction of compensated depletion
mode MOS capacitances, Table 1 gives a comparison of the
area consumption of different types of capacitances in differ-
ent technology generations. Here it has to be kept in mind,
that MIM capacitances have a big drawback. They need ad-
ditional process steps, which leads to higher process com-
plexity.

3 Analog circuit blocks with compensated depletion
mode MOS capacitances

To demonstrate the usability of MOS capacitances, four dif-
ferent analog circuit blocks have been simulated, represent-
ing the basic components of mixed-signal circuitry. To deter-
mine which circuits are sensitive to nonlinearity, the parallel
compensation was assumed as worst case. This shows the
impact of area efficiency on the linearity of mixed-signal cir-
cuits.

3.1 Sample and hold

In the sampling mode, the capacitance is charged up to the
input voltage. With a nonlinear capacitance, the amount of
charge is nonlinearly dependent on the input voltage. In the
hold mode, the sampled voltage is evaluated by connecting
it to a high-ohmic node, most often to the input of an op-
erational amplifier. Therefore the nonlinearity of theC(V )

andQ(V ) characteristics do not influence the circuit func-
tion. To check this in a complete system, we exchanged the
sampling capacitance in a sample and hold circuit between an
anti-aliasing filter and an A/D-converter and replaced it with
an antiparallel compensated MOS capacitance. The simula-
tions showed no decrease of SNDR, confirming that there is
no degradation of linearity.
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(a)

(b)

Fig. 3. Circuit diagram and measured C-V characteristics of an antiserial (left) and an antiparallel (right) compensated depletion mode MOS
capacitance.

(a)

(b)

Fig. 4. Circuit diagram and measured C-V characteristics of an antiserial (left) and an antiparallel (right) compensated depletion mode MOS
capacitance without floating sources.

3.2 Frequency compensation of operational amplifiers

The design constraint for the frequency compensation of
opamps is stability. As an example we discuss the lead lag
compensation method using parallel compensated MOS ca-
pacitances as shown in Fig. 5.

The lead lag network adds a pole and a zero to the trans-
fer function of the opamp. In this example the pole is at

about 10 kHz and the zero at about 100 kHz. Both of them
depend on the compensated capacitance. A problem arises, if
the pole/zero-shift, caused by the nonlinearity of the capac-
itance, influenced the phase margin. But Fig. 5 also shows
that a small shift would have only little effect on the 0 dB
limit and the phase will only change in part 1 of the fre-
quency range. The 0 dB frequency is placed in part 2, so
the pole/zero-shift will have no effect on the stability. That’s
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Fig. 5. RC-network and bode diagram of the lead lag frequency compensation method for operational amplifiers.

Fig. 6. A simple RC integrator on the left and a SC integrator on the right side.

why we can use the most area efficient method, the parallel
compensation (Sauerbrey et al., 2002).

3.3 Switched capacitor low pass filter

For this investigation a second order switched capacitor filter
with a bandwidth offg = 100 kHz and a sampling frequency
of fS = 5 MHz has been used, where all linear capacitances
were replaced by parallel compensated MOS capacitances.
The usability has again been evaluated with the help of the
signal to noise and distortion ratio.

In Table 2, the signal to noise and distortion ratios for dif-
ferent input amplitudes are given. The SNDR decreases for
increasing input amplitude. This can be explained regarding
the operation mode of the filter in the two clock phases of
the SC system. In the first phase, the input capacitanceC1 is
charged withQC1(Vin), where a certain nonlinearity is pre-
sented in the functionQ(V ). This charge is transferred to
the output capacitanceC2, giving rise to an output voltage
determined byQC2(Vout ) = QC1(Vin). As C1 andC2 usu-

ally are not equal, their nonlinearities will not cancel. This
leads to harmonics in the output signal and therefore reduce
the SNDR. This effect increases with the amplitude, as can
be seen from Fig. 4. The example of Table 2 represents the
worst case, as only parallel compensated capacitances were
used. This is sufficient for a SNDR of 60 dB or a resolu-
tion of about 10 bit. A much higher accuracy can be obtained
by using serial instead of parallel compensated MOS capac-
itances. In this way the area consumption can be optimized
concerning the needed accuracy.

3.4 Integrators

The analysis of the RC integrator (Fig. 6) is relatively easy.
You just have to realize that the inverting input of the opamp
is at virtual ground. So the C-V dependency of the integra-
tion capacitance appears directly at the output of the integra-
tor.

Concerning the SC integratorsC2(Vout ), the same depen-
dency exists as in the RC integrator. In addition to that, there
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Table 2. Simulated SNDR of a second order SC low pass filter
with a bandwidth offg = 100 kHz and a sampling frequency of
fS = 5 MHz, realized with parallel compensated depletion mode
capacitances

Signal to Noise and
Input Amplitude Distortion Ratio [dB]

50 mV 84.6
100 mV 71.4
200 mV 60.9

is a voltage dependent deviation caused by the input capaci-
tanceC1(Vin). So with very small input amplitudes the SC-
Integrator will be as good as the RC integrator, but it gets
worse with increasing input amplitudes.

For the integrators we can also summarize, that the area
efficiency strongly depends on the needed accuracy for the
individual application.

4 Conclusion

The mixed-signal circuit designer has not only to consider
the functionality of a circuit, but also the amount of resources
needed. In some circuit blocks there is no problem using the

highly area efficient parallel compensated depletion mode
MOS capacitances, like in the sample and hold or the fre-
quency compensation of opamps. In other blocks the ap-
propriate capacitance topology dependent on the specifica-
tions of the application has to be chosen. A combination
can be suitable in complex mixed-signal circuits like61-
modulators. They are quite insensitive to parameter varia-
tions due to their special feedback structure. So you just have
to spend serial compensated MOS capacitances at a few key
instances, where particularly high linearity is needed. All
other capacitances can be realized by area efficient parallel
compensated MOS capacitances.

This work shows, that compensated depletion mode MOS
capacitances are suitable for low voltage applications in fu-
ture technology generations.
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