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Abstract. This paper deals with millimetre-wave imaging
systems based on linear receiving arrays and is focused on
the issue of angular resolution and coverage for arrays where
the numberM of ports is smaller than the numberN of el-
ements due to forming of subarrays. For a wide angular
coverage a trade-off between a narrow beam width and a
high side-lobe suppression is shown to occur which requires
proper synthesis of the subarray pattern. Two concepts for
an enhanced angular resolution are presented. The first uses
a combination of a frequency dependent distribution network
(frequency scanning) with array signal processing to enhance
angular resolution by cost of a reduced range resolution. The
second approach takes advantage of relative movements to
enhance angular resolution via a combined angular and tem-
poral (Doppler) processing.

1 Introduction

Active millimetre-wave imaging systems are expected to pro-
vide useful functionality in a wide range of applications, e.g.
automotive cruise control (Russell,1997) and robotics if the
cost for such systems can be kept at an affordable level. De-
pending on the special type of application the imaging radar
system has to meet certain requirements with respect to the
maximum range, range resolution and accuracy, the angular
field of view (angular coverage), angular resolution and ac-
curacy as well as the update rate. This paper is in particular
focused on angular resolution and coverage.

In principle, the angular information can be derived from
either a sequential or a simultaneous (monopulse) angular
scanning mode. The first approach includes mechanically
steered directional antennas as well as phased arrays and
switched multi-beam antenna arrays. The latter approach
comprises array signal processing (ASP) techniques based on
an architecture with parallel receivers and array signal opera-
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tions in the digital domain. In case of a scenario with relative
movements between objects the information retrieved from
sequential and simultaneous scanning may significantly dif-
fer from each other due to temporal fluctuations of the radar-
cross-sections (RCS) of scattering centres.

In all approaches for estimating the angular distribution
of the backscatterers from received data, the angular resolv-
ing power is related to the linear sizeD of the aperture in
terms of the free space wavelengthλ. In case of conventional
beamforming the angular resolution is on the order of the 3-
dB beam width. For a required resolutionδ2 the necessary
aperture size thus becomes

Dconv ≥
50λ

δ2/ deg
. (1)

High-resolution approaches such as minimum variance di-
rection estimator (MVDR) and MUSIC are capable of resolv-
ing scattering centres within the beam width. However, since
for these methods the angular accuracy rapidly degrades with
the number of scatterers separated by less than a beam width
(Friedlander 1991, Wax 1989, Bresler 1986), only a small
fraction ofN −1 (with N as the array order) scatterers within
a beam width can be resolved. Thus, the beam width influ-
ences the resolving power of high-resolution approaches as
well. The second important parameter is the available num-
ber of degrees of freedomM − 1 in beamforming which
corresponds toM antenna ports possessingM mutually or-
thogonal radiation pattern. Furthermore,M parallel receiver
branches are required for ASP systems orM electronic
phase-shifters for phased array systems. For a linear array
and about 180 degree angular coverage half-wave element
spacing is required leading toN = 2D/λ + 1 element ports
and therefore to a maximum number ofMmax − 1 = 2D/λ

degrees of freedom.
Provided cost saving issues at the device level are success-

fully solved, the operational frequencies for the considered
millimetre wave radar systems can be chosen to be about
75 GHz and may even move to values above 100 GHz. Con-
sequently, in most applications the implementation of an ar-
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Fig. 1. Considered imaging system with transmitting antenna TX,
scattering centersρµ, linear receiving array withN elements and
subarray forming network (SFN) withM < N output ports.

ray which is according to Eq. (1) sufficiently large does not
represent a serious problem anymore but the implementation
of Mmax receiver channels (or even phase shifters for phased
array systems) becomes very costly. It is therefore of interest
to exploit less than the available numberMmax −1 degrees of
freedom for beamforming. This is accomplished by employ-
ing fixed millimetre wave beamforming networks composed
of fixed phase shifters and power dividers to provide from in
total N antenna elementsM < Mmax = N subarrays pos-
sessing mutually orthogonal subarray radiation pattern.

This paper aims to discuss the impact of a suboptimal
(M < Mmax) number of degrees of freedom onto the angular
resolution capabilities and presents concepts which partially
allow to overcome performance degradations caused by the
reduced numberM. In Sect. 2 a model and the corresponding
notations for the problem under consideration is introduced.
Section 3 provides some general results for the system degra-
dations and discusses criteria for an “optimum” choice of the
subarrays. In Sect. 4 a novel combination of frequency scan-
ning with array signal processing is proposed which allows to
trade-off resolving in range and angle. Section 5 discusses an
approach which combines array signal processing with tem-
poral Doppler processing in order to enhance angular resolu-
tion.

2 Representation of the considered problem

The system to be discussed aims to produce a two-
dimensional “mm-wave image” of a 3-dimensional scenario
composed of various objects. In the used linear model the
complex backscattering phenomena are replaced with a set
of independent scattering centres. Scattering by a scatter-
ing centre can be characterised by a scattering coefficients
ρi(uinc, f ) with |ρi |

2
= σi representing the radar cross-

section. Both quantities depend on the aspect directionuinc,
frequency and polarisation. The scalar quantities are under-
stood to be the values which apply to the specific polarisa-

tion of the employed TX and RX antennas. The position of
scattering centrei is in two dimensions characterised by the
azimuth angle2i (“look direction”) or the sinus of the look
direction sin2i = ui and the path lengthli or corresponding
time delayτi = li/c between phase centre of transmission
antenna to the scatterer and back to the centre of the receiv-
ing antenna.

The following considerations are based on the assumption
that a pulse radar with centre frequencyf0, effective fre-
quency bandwidth1f and pulse repetition frequency 1/Tr

is used. Furthermore, a bistatic configuration with a single
transmission antenna and a linear array as receiving antenna
(see, Fig. 1) is considered. Modification of the results to ac-
count for other configurations like a monostatic configuration
or a multiple-input/ multiple-output (MIMO) configuration
are straightforward.

With conventional (no high-resolution approach) process-
ing two different path-lengths can be resolved if the cor-
responding complex-valued envelopes possess a sufficiently
small overlap in time. This leads to a path length resolution
of about1l ≈ c/1f . If a periodically switched time gate
(range gate) is allocated to each path length interval of length
1l the echos from scattering centres falling into this interval
are sampled in time (“snapshots”) with a time increment of
Tr . The path lengths can change in time if relative move-
ments between antenna and scattering centres occur. In or-
der to move the corresponding echo from one range gate into
the adjacent range gate the path length must change by1l.
However, path length changes on a much smaller scale lead
to phase changes from snapshot to snapshot. A path length
change ofc/f0 leads to a change in phase by 2π . For f0=
75 Ghz and1f = 1 GHz for example, a 300 mm path length
change are required for a shift into another range gate but
only 4 mm for a phase change of 2π .

At each instant in time (“snapshot”) which corresponds to
a considered path length interval (or range gate) a set ofN

complex amplitudesx = [x1, x2, ..., xN ]
T , with superscript

T denoting the transposition, is induced at theN antenna
elements. IfM < N subarrays are formed via a (ideally)
lossless distribution network (“subarray forming network”,
SFN) theN -dimensional vectorx is transformed into aM-
dimensional vector

y = W · x. (2)

W exhibitsM < N rows andN columns andW · WH
= 1

holds. In the following sections the properties of the multi-
port antenna consisting of theN elements without SFN
(number of portsL = N ) has to be compared with the multi-
port antenna build from theN-element array in combination
with the SFN(L = M < N). For ease of consideration it is
assumed that within the field of view in vertical direction the
radiation pattern of the considered antennas can be assumed
to be constant so that only the dependence on2 and therefore
on u = sin2 has to be taken into account. In the remaining
part of this paper the variableu is used and for convenience
referred to as “angle”.
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The properties of a generalL-port antenna are completely
described by the steering vector

s(u) = [C1(u), C2(u), ..., CL(u)]T (3)

where the functionsC1(u) represent the directivity in direc-
tion u associated with portl. The set of all steering vectors
span aL-dimensional spaceSL. Assuming a fictious lossless
distribution network connected to thisL-port antenna and the
weights adjusted such that the gaing (or directivity on the
lossless case) is maximised towards a given look direction
u0, one finds for the weights to be given by

w(u0) = s(u0)/|s(u0)|. (4)

Therefore the gain-function becomes

g(u, u0) = wH (u0) · s(u) =

|sH (u0) · s(u)|2/|s(u0)|
2 (5)

with the maximum gain given by

gmax(u0) = g(u0, u0) = |s(u0)|
2 (6)

In order to allow the properties of different multi-port
antennas to be compared with each other the functions
gmax(u0), 1U(u0) andL(u0) can be considered. Function
gmax(u0) characterises the angular coverage of theL-port an-
tenna. If a homogeneous coverage of all look angles in the
interval−u0,max < u0 < u0,max is required the condition

gmax(u0) ≈ const for − u0,max < u0 < u0,max (7)

should be met. The width of the maximum of the gain-
function atu0 defines the local beam width which is intro-
duced as

1u(u0) = 2

√
g(u0, u0)/

d2g

du2
(u = u0, u0). (8)

Beside the main maximum the gain-function can possess lo-
cal maxima (side-lobe) with highest side-lobe atusl . This
property is described by

L(u0) = g(usl, u0)/g(u0, u0). (9)

Measurement of backscattered field from scattering centres
in look directionu1 to uQ with the scattering amplitudesρ1
to ρQ are represented by theL × L covariance matrix

R =

〈
Q∑

v=1

Q∑
µ=1

ρ∗
vρµs∗(uv) · sT (uµ)

〉
+ Pnoise1. (10)

In Eq. (10) the scattering coefficients are understood to in-
clude the path-loss in wave propagation.Pnoise represents
noise contribution. The symbol〈〉 denotes the mean of co-
variance matrices which are gained from different snapshots
(periodic sampling of range gate with time incrementTr ).
In case of a scene without relative movement the contribu-
tions from different scattering centres have to be considered
as correlated . However, if scattering centres possess rela-
tive movements, their phase difference varies from snapshot

to snapshot so that their contributions become de-correlated
leading to

R =

Q∑
µ=1

σµs∗(uµ) · sT (uµ) + Pnoise1. (11)

The results for the general L-port antenna can now be applied
to the array without subarray forming network (SFN) with
L = N and to the array with SFN andL = M < N . For the
linear array withN identical elements with element pattern
Cel(2,8) ≈

√
g0 in the field of view and spacinga = λ/2

for 180 degree angular coverage the steering vector becomes

sx(u) = [1, exp(jπu), exp(j2πu), ..., exp(jπ(N − 1)u)]T

exp(−j0.5(N − 1)πu)
√

g0. (12)

Steering the maximum gain into the look directionu0 results
in a gain function

gx(u, u0) = sH
x (u) · sx(u0) =

gel

N
sin2

[
N

2
π(u − u0)

] /
sin2

[
1

2
π(u − u0)

]
(13)

with local (differential) beam width forN ≥ 2 estimated via

1u(u0) =
1

π

√
24

N2 − 1
(14)

and maximum gain

gmax(u0) = sH
x (u0) · sx(u0) = Ngel . (15)

3 Impact of reduced number of degrees of freedom on
the angular resolution and coverage

At the output of the subarray forming network (SFN) a
M-dimensional vectory is available, related to theN -
dimensional vectorx via

y = W · x. (16)

Performing ASP to theM-dimensional signal vectory with
the M-dimensional steering vectorsy(u) is equivalent with
ASP to theN -dimensional signal vectorx with the N-
dimensional steering vector

sx(u) = WT
· sy(u). (17)

Equation (17) defines aM-dimensional subspaceSy of the
N-dimensional spaceSx . Consequently,sx(u) is confined to
the subspaceSy ⊂ Sx . Thus, at the output ports of the subar-
rays only a subset of gain-functions is available. It is there-
fore of interest to know how the restriction to this subset of
gain-functions impacts on the achievable angular resolution
and coverage.

Theoretically, there is an infinite number of choices for
the formation of subarrays and therefore for theM × N

matrix W. Different Ws result in different steering vec-
tor functionssy(u) and in different gain functionsg(u, u0).
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Fig. 2. Normalised gain functions for 3 different antenna configura-
tions which have a angular coverage ofu0,max ≈ 1 and an element
spacing ofλ/2 in common: Array withN = M = 4 (4E-4P), array
with N = M = 16 (16E-16P) and array withN = 16 andM = 4
(16E-4P) with specifically chosen subarrays.

Hence, there is a need for criteria which allow to select gain-
functions which “optimally” match the requirement for a
given imaging problem. The realisation of these optimum
gain-functions corresponds to the choice of an optimum ma-
trix W. For the angular coverage requirement

gmax(u0) ≈ gmax,0 = const in − u0,max < u0 < u0,max

the general restriction

1∫
−1

g(u, u0)

gmax,0
du ≈ 2

u0,max

M
(18)

can be derived. This means that the area under the nor-
malised gain function for all look angle directions depends
on the required angular coverageu0,max and the numberM
of subarray ports only. Furthermore, the achievable local dif-
ferential beam width is limited by the aperture size (exclud-
ing superdirective antennas) and therefore by the numberN

of antenna elements. Eq. (14) may be used as an estimate for
the lower limit for1u:

1u(u0) ≥
1

π

√
24

N2 − 1
≈

λ

D
. (19)

The degrees of freedom in synthesising a suitable set of
gain functionsg(u, u0) for a given numberM of subarrays
and a given angular coverage can be deduced from Eqs. (18)
and (19). Figure 2 may serve to illustrate the consequences
of restrictions (18) and (19). It shows the gain-function (for
look-directionu0 = 0.2 as an example) for 3 different ar-
ray configurations which have an angular coverage of nearly
u0,max ≈ 1 and a half-wave spacing between antenna ele-
ments in common. The first case is an array withN = 4 ele-
ments andM = N . The achievable gain function is governed
by the area under the gain-function of about 0.5 (Eq. 18) and

Fig. 3. Dependence of maximum gaingmax(u0), local beam width
1u(u0) and side-lobe ratioL(u0) on the steering directionu0 for
the array withN = 16 andM = 4 and specifically chosen subar-
rays.

the minimum local beam width of about 0.4 (see, Eq. 19).
The second case isM = N = 16. Now the achievable local
beam width becomes because of Eq. (19) lower and the area
under the gain-curve by a factor of 4 lower. The third case
with N = 16, butM = 4 belongs to the class of antenna
configurations which are of main interest in this paper. Now,
the achievable local beam width is governed byN = 16,
but the area under the gain-curve byM = 4. If the same
small beam width as in case 2 is chosen the larger area will
lead to 3 side-lobes of equal height as the main lobe. With
larger beam width the side-lobes can be made smaller. Case
3 in Fig. 3 represents an example where 4 subarrays were
formed from an 16-element array. The main beam directions
of these subarray are chosen such that they point into differ-
ent directions. A minimisation of the variations of the maxi-
mum gainGMAX(U0), the local beam width1u(u0) and the
side-lobe ratioL(u0) within |u0| < u0,max could be a suit-
able criterium for the choice of the subarrays and therefore
of W. Figure 3 illustrates the variations of these 3 quantities
with u0 in case of the array withM = 4 andN = 16 and
the particular choice of the subarrays. In this case the sub-
arrays were designed to yield constant maximum gain up to
u0 = 0.8.

There is a large number of different concepts for estimat-
ing the angular distributionσ(u) of the RCS: Conventional
(Bartlett estimation)

σ1(u) = sH
y (u) · Ry · sy(u), (20)

Minimum variance direction estimation (MVDR) as example
for a high-resolution approach

σ2(u) =
1

sH
y (u) · R−1

y · sy(u)
. (21)

In case of the Bartlett estimation the obtained result is sig-
nificantly improved if the contributions of the different scat-
tering centres are de-correlated, in case of the MVDR de-
correlation is a necessary condition. As already explained
above, pulse radar yields snapshots of received signalN -
dimensional vectorx at instancest = t0, t0 +Tr , t0 +2Tr , ...
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Fig. 4. Combination of frequency scanning with ASP. Left: Configuration with N-dimensional antenna array, frequency scanning network
(FSN) and reduced Butler matrix withM =< N output ports. Right: Illustration of frequency scanning forM = 4 beams.

in time. In case of relative movements, decorrelation is
achieved by averaging between different snapshots. For both
approaches, Eqs. (20) and (21) angular resolution improves
with the local beam width of the gain-function.

4 Combination of frequency scanning and ASP

As seen from Eqs. (18) and (19), there is a trade-off for
M < N between the demand for a narrow beam width and
a low side-lobe ratio of the gain-function on one side and a
large angular coverage on the other side. Only if the angular
coverage is reduced to

u0,max ≤ M/N, (22)

the gain-function can be realised with a beam width and a
side-lobe ratio in agreement with the values achieved for
M = N . This can be accomplished by means of a reduced
Butler matrix network. The “full” Butler matrix (BM) for a
linearN -element array is a 2N -port comprising hybrid cou-
plers and fixed phase-shifters withN ports connected to the
N antenna elements. TheN remaining ports represent the
output ports of the BM. As a result of the BM-topology the
N -dimensional steering vector for the output ports of the full
BM becomes

sButler,N (u) = [C1(u), C2(u), ..., CN (u)]T with

Cn(u) =
√

g0 sin[0.5πN(u − un)]/
√

N sin[0.5π(u − un)] (23)

with un = (2n − N − 1)/N . Hence, each output port cor-
responds to one ofN mutually orthogonal beams and the
set ofN beams provide a full coverage for 1< u0 < 1.
For M < N and coverage restricted to angles according to
Eq. (22) it is sufficient to have thoseM of N output ports
of the full Butler matrix available which correspond toM
adjacent beams with coverage foru0,max in accordance with
Eq. (23). This leads to a reduced BM withN input but only
M output ports. The topology of this reduced BM is derived
from the topology of the full BM by removing all hybrid cou-
plers and fixed phase-shifters which are exclusively allocated

to theN − M ports which do not belong to theM selected
ports.

The steering vector in case of the reduced BM follows
from that of the full BM ifM − N components ofsButler(u)

(see, Eq. 23) are replaced with zeros. The corresponding
gain-function is characterised by the same beam width and
side-lobe ratio as for the full BM but the maximum gain
gmax(u0) rapidly drops to low values foru0 > M/N . A
larger angular coverage can be obtained if additionally to the
reduced BM a network for frequency scanning (see, Fig. 4)
is introduced. This frequency scanning network (FSN) con-
sists of parallel delay lines with different delaysτn which are
inserted between the antenna elements and the BM. Now the
radiation pattern becomes frequency-dependent. For a pre-
scribed angular coverage ofu0,max the directional pattern of
the linear array at the maximum operational frequency must
be shifted by1u = 2(umax − M/N) relative to the pattern
at the minimum operational frequency. As a consequence,
the received pulses from the scattering centres become a
bandpass-filtered version of the transmitted pulses. The fre-
quency bandwidth of the received pulses is by a factor of
M/Nu0,max reduced in comparison to the bandwidth of the
transmitted pulses. Therefore the range resolution is reduced
by the same factor. Angular resolution is gained by cost of
range resolution. Comparing the described combination of
ASP with frequency scanning with conventional frequency
scanning (only one transceiver channel), the range resolution
is improved by a factor ofM and additionally high-resolution
methods can be applied. Signal processing for angular infor-
mation requires ASP to be combined with digital filtering in
the frequency domain. A severe practical issue associated
with this concept is the realisation of relatively large delays
in the FSN which tend to introduce dissipative insertion loss.

5 Combined angular and temporal (Doppler) process-
ing

TheM-dimensional vectorsy(ti) for theK = 1t/Tr snap-
shots taken att0, t0 + Tr , t0 + 2Tr , ..., t0 + (K − 1)Tr are
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Fig. 5. Resolution of 2 scattering centers in the 2-dimensional
angle-Doppler-domain.

taken as input data for a combined processing in angle and
Doppler velocity (see e.g. Klemm, 2002). In the sim-
plest processing scheme a 2-dimensional FFT is applied to
the M × K complex values resulting in the 2-dimensional
(angle and Doppler) distribution for the scattering centres.
This is illustrated by means of an example where backscat-
tered data from 2 scattering centres (separated in angle by
1u = 0.34) are assumed to be gained from a linear array
with M = N = 4. Due to the low order (size) of the ar-
ray the conventional Bartlett estimation (see, Eq. 20) for the
angular scatterer distribution is not sufficient to resolve the
2 scattering centres. It is now assumed that within the ob-
servation time the changes in pathlengths for both scatter-
ing centres differ by about 5.5λ (e.g. by 22 mm in case of
f0 = 75 GHz). Figure 5 shows the angle-Doppler distribu-
tion as result of the 2D-FFT. Instead of the Doppler velocity
the relative shift1s/λ is used as a coordinate. Two max-
ima are clearly separated in this two-dimensional distribu-
tion. By applying a non-linear adaptive scaling to this distri-
bution and by projecting back to the coordinateu the angular
distribution as shown in Fig. 6 in comparison to the result of
the Bartlett estimation is obtained. This demonstrates an im-
proved angular resolution as result of the combined process-
ing in angle and Doppler. With a high-resolution method,
e.g. with MVDR (see, Eq. 21), the two scattering centres in
this example would also have been resolved without any ad-
ditional Doppler processing. However, this does not prove
that the combined angle-Doppler processing is not superior
to the angular processing. If a 2-dimensional high-resolution
estimation scheme would be applied to the 2-dimensional
angle-Doppler data, a better angular resolution than in case
of the one-dimensional high-resolution estimation would be
achieved.

The difference between this approach and the synthetic-
aperture radar (SAR) principle can be explained as follows:
In case of SAR there is some knowledge about the direction
and velocity of the movement of the scenario relative to the

Fig. 6. Improvement of angular resolution by means of angular-
Doppler-scan in comparison to conventional angular Bartlett scan.

antenna. This enables the different Doppler shifts to be trans-
formed into angular positions and the angular information is
gained from Doppler processing. The approach described in
this paper does not require any knowledge about direction
and velocity of the relative movements. If differential move-
ments of the scattering centres occur an improved angular
resolution is achieved but the angular information is retrieved
from angular and not from Doppler processing.
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